• Title/Summary/Keyword: topology field

Search Result 214, Processing Time 0.031 seconds

TOPOLOGY FIELDS, TOPOLOGICAL FLOWS AND TOPOLOGICAL ORGANISMS

  • Kim, Jae-Ryong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.53-69
    • /
    • 2013
  • Topology may described a pattern of existence of elements of a given set X. The family ${\tau}(X)$ of all topologies given on a set X form a complete lattice. We will give some topologies on this lattice ${\tau}(X)$ using a topology on X and regard ${\tau}(X)$ a topological space. A topology ${\tau}$ on X can be regarded a map from X to ${\tau}(X)$ naturally. Such a map will be called topology field. Similarly we can also define pe-topology field. If X is a topological flow group with acting group T, then naturally we can get a another topological flow ${\tau}(X)$ with same acting group T. If the topological flow X is minimal, we can prove ${\tau}(X)$ is also minimal. The disjoint unions of the topological spaces can describe some topological systems (topological organisms). Here we will give a definition of topological organism. Our purpose of this study is to describe some properties concerning patterns of relationship between topology fields and topological organisms.

Topology Optimization of a Bias Magnetic Field for the Performance Improvement of a Magnetostrictive Sensor (마그네토스트릭션 센서 성능 향상을 위한 바이어스 자기장의 위상 최적설계)

  • Cho, Seung-Hyun;Kim, Youngkyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.554-558
    • /
    • 2002
  • A magnetostrictive sensor is used to measure stress waves propagating in a ferromagnetic cylinder without physical contact. The performance of a magnetostrictive sensor is affected most significantly by the bias magnetic field applied around the measurement location. The goal of this paper is to carry out the topology optimization of the bias magnet and yoke assembly to maximize the sensor output for traveling bending waves. We will use the multi-resolution topology optimization strategy to find the assembly of the bias magnet and the yoke that is easy to realize. The effectiveness of the present design is confirmed by an actual measurement of the sensor signal with the proposed bias magnet and yoke configuration.

  • PDF

Topology Characteristics and Generation Models of Scale-Free Networks

  • Lee, Kang Won;Lee, Ji Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.205-213
    • /
    • 2021
  • The properties of a scale-free network are little known; its node degree following a power-law distribution is among its few known properties. By selecting real-field scale-free networks from a network dataset and comparing them to other networks, such as random and non-scale-free networks, the topology characteristics of scale-free networks are identified. The assortative coefficient is identified as a key metric of a scale-free network. It is also identified that most scale-free networks have negative assortative coefficients. Traditional generation models of scale-free networks are evaluated based on the identified topology characteristics. Most representative models, such as BA and Holme&Kim, are not effective in generating real-field scale-free networks. A link-rewiring method is suggested that can control the assortative coefficient while preserving the node degree sequence. Our analysis reveals that it is possible to effectively reproduce the assortative coefficients of real-field scale-free networks through link-rewiring.

REMARKS ON HOMOTOPIES ASSOCIATED WITH KHALIMSKY TOPOLOGY

  • HAN, SANG-EON;LEE, SIK
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.577-593
    • /
    • 2015
  • Several kinds of homotopies have been substantially used to study topological properties of digital spaces. The present paper, as a survey article, studies some recent results in the field of homotopy theory associated with Khalimsky topology. In particular, Khalimsky topological properties of digital products related to the establishment of the homotopies are mainly treated.

Multi-domain topology optimization of pulsed magnetic field generator (교번자기장 발생기의 다 영역 위상최적설계)

  • Lee, Jang-Won;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.872-873
    • /
    • 2011
  • This paper presents a multi-domain topology optimization using the harmonically excited coil and the iron in order to focus pulsed magnetic field (PMF). The design sensitivity of the harmonic magnetic field is derived by adjoint variable method. As a result of the optimization, PMF is considerably concentrated on the objective domain with much less leakage than the initial model.

  • PDF

Underwater Acoustic Lens Design Using Topology Optimization (위상최적화를 이용한 수중음향렌즈의 설계)

  • Jang, Gang-Won;Tran, Quang Dat;Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Seung Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

COMPARISON OF TOPOLOGIES ON THE FAMILY OF ALL TOPOLOGIES ON X

  • Kim, Jae-Ryong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.387-396
    • /
    • 2018
  • Topology may described a pattern of existence of elements of a given set X. The family ${\tau}(X)$ of all topologies given on a set X form a complete lattice. We will give some topologies on this lattice ${\tau}(X)$ using a fixed topology on X and we will regard ${\tau}(X)$ a topological space. Our purpose of this study is to comparison new topologies on the family ${\tau}(X)$ of all topologies induced old one.

Topology Optimization of an Acoustic Diffuser Considering Reflected Sound Field (반사 음장을 고려한 음향 확산 구조의 위상 최적 설계)

  • Yang, Jieun;Lee, Joong Seok;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.973-981
    • /
    • 2013
  • The main role of an acoustic diffuser is to diffuse reflected sound field spatially. Since the pioneering work of Schroeder, there have been investigations to improve its performance by using shape/sizing optimization methods. In this paper, a gradient-based topology optimization algorithm is newly presented to find the optimal distribution of reflecting materials for maximizing diffuser performance. Time-harmonic acoustic analysis in a two-dimensional acoustic domain is carried out where the domain is discretized by finite elements. Perfectly matched layers are placed to surround the domain to simulate non-reflecting boundary conditions. Design variables are assigned to each element of which material properties are interpolated between those of air and those of a rigid body. An approach to extract the reflected field from the total acoustic field is employed. To validate the effectiveness of the proposed method, design problems are solved at different frequencies. The performance of the optimized diffusers obtained by the proposed method is compared against that of the conventional Schroeder diffusers.

Topology optimal design of magnetic recording system (자기기록장치의 위상최적설계)

  • Park, Soon-Ok;Choi, Jae-Seok;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.618-621
    • /
    • 2008
  • The magnetic recording system shows the difference of the magnetic recording density according to the direction of the magnetic field. The yoke shape of the recording system affects the magnetic field direction; therefore, the recording density may be raised by changing the shape. This paper intends not only to increase the magnetic flux density of the record region but also to reduce the recording loss of a specific region through the simultaneous design of the yoke and the magnet. The recording loss can be reduced by minimizing the magnetic flux of the adjacent area to the recording region. The topology optimization method is used to obtain the optimal shape both of the yoke and the magnet. And the commercial package, Maxwell is used to verify the result.

  • PDF