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COMPARISON OF TOPOLOGIES ON THE FAMILY OF
ALL TOPOLOGIES ON X

JAE-RyonGg Kim*

ABSTRACT. Topology may described a pattern of existence of ele-
ments of a given set X. The family 7(X) of all topologies given on a
set X form a complete lattice. We will give some topologies on this
lattice 7(X) using a fixed topology on X and we will regard 7(X) a
topological space. Our purpose of this study is to comparison new
topologies on the family 7(X) of all topologies induced old one.

1. Introduction.

Let X be a set. The family 7(X) would consist of all topologies on a
given fized set X. Here we want to give topologies on the family 7(X)
of all the topologies using the given a topology 7 on X and compare the
topologies induced from the fixed old one.

The family 7(X) of all topologies on X form a complete lattice, that
is, given any collection of topologies on X, there is a smallest (respec-
tively largest) topology on X containing (contained in) each member
of the collection. Of course, the partial order < on 7(X) is defined by
inclusion C naturally.

In the sequel, the closure and interior of A are denoted by A and
int(A) in a topological space (X, 7). The 6-closure of a subset G of a
topological space (X, 7) is defined [8] to be the set of all point z € X
such that every closed neighborhood of z intersect G non-emptily and is
denoted by Gy (cf. [1],[5]). Of course for any subset G in X, G C G C Gy
and Gy is closed in X. The subset G is called #-closed if Gy = G. If G
is open, the G = Gy.
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Similarly, the #-interior of a subset G of a topological space (X, 7) is
defined to be the set of all point z € X for which there exists a closed
neighborhood of x contained in G. The #-interior of GG is denoted by
intgG. Naturally, for any subset G in X, intg(G) C G. An open set
U in (X, 7) is called #-open if U = inty(U). By the definition of this
0-open, the collection of all #-open in a topological space (X, 7) form a
topology 7 on X which will called the 6 topology induced by 7 which
is related to the semi-regular topology on (X, 7) (cf. [7] [3]).

The semi-regular topology 75 is the topology having as its base the
set of all regular open sets. A subset A of a topological space X is called
regular open [7] if A = intA. For any subset A of X, int(A) is always
regular open. The collection of all regular open subsets of a topological
space (X, 7) form a base for a topology 75 on X coarser than 7, (X, 7y)
is called the semiregularization of (X, 7).

We should recall the definitions of almost-continuity and #-continuity:
A function f : X — Y is almost-continuous(f-continuous) if for each
x € X and each regular-open V( open V') containing f(x), there exists
a open set U containing x such that f(U) C V (f(U) c V) (3]).

THEOREM 1.1. [3] Let f : X — Y be continous map. If V. C X is
§-open, then f~(V) is f-open.

THEOREM 1.2. [3] Let f : X — Y be a function from X onto Y that
is both open and closed. Then f preserves 8-open sets.

2. Topology on the family 7(X) related to the 6 topologies
on X.

Let (X, 7) be a topological space, and G € 7 . Let i(G)={¢eT(X)
|GeC} and denote e={i(G)|GeT}, a family of subset of 7(X). Then
there is exactly one topology In, on 7(X) with € as a subbasis. We will
call this topology the inner topology induced by the topology 7 ([4]).

If ( <n,thenV G € (, Gen. Thatis, if i(G) > ¢, then i(G)N{n} #
(. This implies ¢ € {n}. Conversely ¢ € {n} implies ¢ < n. If this
relation holds we say that ¢ is a specialization of n [6]. For any n € 7(X)
we will denote the subset {¢ € 7(X)|¢ > n} by 1 (). We shall also use
later the notation | (1) for {¢ € 7(X)|¢ < n}. Then since i(G) = { ¢
erT (X)|Ge(}, i(G) =1 ({0,X,G}). Hence ¢ € {n} if and only
if ( <. Since Alexandrov topology T on 7(X) is the collection of all
upper sets in 7(X) (i.e. sets U such that n € U and n < ¢ imply ¢ € U)
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[6], i(G) € Y. Hence we have the following result [2]. If 7 < { <1, then
In, <In;<In; <7T.

Now we will define a different topology on 7(X) the 6 topology in-
duced by given topology 7. Let (X,7) be a space, and G € 7. Let
0(G)={Ce7(X)|G:0—openin( } . And denote § = {0(G)|G € 7},
a family of subset of 7(X). Then there is exactly one topology 6, on
7(X) with 8 as a subbasis. We will call also this topology 6, on 7(X)
the 8 topology induced by the topology 7.

If we consider 6 as a map from 7(X) to 7(X) defined by 0(n) = ny,
then we have next result ([3]):

THEOREM 2.1. Let (X, T) be a topological space. Then the induced
map
0: (r(X),0r) = ((X),0r)

Is continuous.

Suchmap 0 : (7(X),0;) = (7(X), 6;) will be called #-operator. More-
over this map satisfies that

COROLLARY 2.2. (¢ An) <0(¢) ANb(n) and 6(C) vV 8(n) < O(CVn).

For a topological space (X, ), the collection of all open neighbor-
hoods of p and empty set, that is, {V € 7|p € V} U {0} becomes a
topology on X for any point p € X. We will denote such a topology
by 7, and call localized topology of T at p. We will denote the localized
topology of the discrete topology P(X) on X at p by 1,.

Denote 7,(X) = {n, | n € 7(X) } for a point p € X. Since 7(X)
is a complete lattice, we can easily find that 7,(X) is a sublattice of
7(X). The smallest element of this sublattice 7,(X) is 0,=0, the largest
element is P(X),=1,#1. We will call this sublattice 7,(X) as sublattice
of all localized topologies at p in X.

Now we will regard any member 7 of 7(X) as a map from X to
UpTp(X) C 7(X) defined by 7(p) = 7,. Hence this map 7 acts like a
vector field on X. Such a map f : X — 7(X) defined by f(p)e 7,(X)
will be called topology field on X [4].

THEOREM 2.3. [4] Topology field ¢:(X,7) — (7(X), In;) is continu-
ous.

THEOREM 2.4. [3] If (X, () is a 0 topological space, then the topology
field (:(X,7) — (7(X), 6;) is continuous.
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COROLLARY 2.5. If (X,() is a regular topological space, then the
topology field (:(X,7) — (7(X), 6,) is continuous.

Additionally, if f is open and closed and w € §(f~1(QG)), then f~1(G)
is f-open in (X,w). By Theorem 1.5 ([3]), G is -open in (X, fi(w)), i.e.
f«(w) € 0(Q). That is, w € f;1(0(G)). Consequently we have;

THEOREM 2.6. If f : (X,7) — (Y,n) is a continuous and open and
closed surjective map, then for any open G in Y

£7H0(G) = 0(F7HG)).-

Let (X, 7) and (Y, ¢) be topological spaces. We may assume that 7(X)
and 7(Y') are given the topologies 6, and 6 respectively and assume that
7(X x Y) is given topology 0;x¢. Then we have the next theorem by

13].

THEOREM 2.7. The multiplication x : 7(X) x 7(Y) - 7(X x Y) is
continuous.

THEOREM 2.8. Let (X, 7) and (Y, () be topological spaces. Then
To X Cg = (7‘ X C)g

Consequently we have the following commutative diagram:

X

7(X) x 7(Y) — T(X xY)
10x6 16
7(X) x 7(Y) = (X xY).

Again we consider © as a map from 7(X) to 7(7(X)) defined by
©(n) = 6, then we have next result.

THEOREM 2.9. Let (X, 7) be a topological space. Then the induced
map

©: (7(X),T) = (7(7(X)), )
is continuous.

COROLLARY 2.10. Let (X,7) be a topological space. Then the in-
duced map

©: (1(X),0:) = (7(7(X)), 0s,)

IS continuous.
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3. Topology on the family 7(X) related to the 6 topologies
on X.

DEFINITION 3.1. Let (X, 7) be a topological space, and G € 7. Let
wl(G) = {¢ € 7(X) | there exist #-open O in ¢ such that O C G}.
Denote § = {wl(G) | G € 7}, a family of subset of 7(X). Then there
is exactly one topology w, on 7(X) with § as a subbasis. We will call
this topology w6, the weak 0 topology induced by the topology 7.

It is natural 6, < wé,.
THEOREM 3.2. If 7 < ¢ <1, then wo, < wl: < wh; < T.

Proof. For any G € 7 < (, by definition of wf(G) we can naturally
have w; < wé;. Now we will prove that every wf(G) is upper set in
7(X). Let 6 € wf(G). Then there exists a f-open O in (X, J) such that
O C G. Hence O € §y. If 6 <+, we have by Theorem 2.1, O € 7y. This
means O is f-open in (X, ) such that O C G. This implies v € wd(G).
Hence wé(G) is upper set in 7(X). This completes the proof. O

If we consider 6 as a map from 7(X) to 7(X) defined by 0(n) = ng,
then we have;

THEOREM 3.3. Let (X, 7) be a topological space. Then the induced
map
0:(1(X),wd;) = (1(X),wb,)

Is continuous.

Proof. Let ¢ € 7(X) and wd(K) is a neighborhood of 6(¢) = (y where
K € 7. Then since (y = {U € (|U : 6 —open in (X, ()}, there exists a
f-open set H in (X, (y) such that H C K. Hence H is also #-open in
(X,¢) such that H ¢ K. Consequently ¢ € wf(K), i.e. wl(K) is a
neighborhood of ¢ which satisfied that 6(6(K)) C 6(K). This completes
the Theorem. O

COROLLARY 3.4. If (X, () is a 8 topological space, then the topology
field ¢ : (X, 7 — (7(X),w6;) is continuous.

Proof. Let p € X and wf(G) be a subbasic open neighborhood of
¢(p)=Cp. Then there is a f-open O in (X, (,) such that O C G. This
implies O is #-open in (X, () because O is open set in (X, () which
contains the point p. Moreover since Ge€7, G is a neighborhood of p.
Hence if ¢eG, ((q)=(;cwb(G), so that ((G) C wf(G). This shows that
topology field ( is continuous. O



392 Jae-Ryong Kim

COROLLARY 3.5. If (X,() is a regular topological space, then the
topology field (:(X,7) — (7(X), wh;) is continuous.

Let f:(X, 7) — (Y, n) be a continuous surjective map. If we define a map
Fo (7 (X)w0,) = ((V), why) by fo(w)={U  Y|f(U) € w}, then
f«(0) =0 and f.(1) = 1. Let w € 7(X). For any subbasic open neigh-
borhood wf(G) of fi(w) in (7(Y),wb,), where G is open in (Y, n), there
is a #-open O in (Y, f.(w)) such that O C G. By Theorem 1.1, f~1(0)
is f-open in (X, w) such that f~1(0) C f~1(G). Thus w € wO(f~1(Q)).
Hence w6(f~(G)) is an open neighborhood of w in (7(X),w#,). Con-
sequently we have the next result.

THEOREM 3.6. Let f:(X, 7) — (Y, n) be a continuous surjective
map. If we define a map f.:(7(X),wb;) — (7(Y),wb,) by f.(w)={U C
Y|f~1(U) € w}, then the map f, is continuous. If v < 6§, then f,(y) <
f«(6) and fi(7)>n. And for any 6 topology field ¢, the diagram

(X,7) L (Y,n)
¢ 1 Q)
(7(X), ) ELN (T(Y), why)

commutes. Furthermore if (Z, \) is a topological space and g: (Y, n) —
(Z, M) is a map, then

(go f)e=gxo0 fu
Finally, if f:(X ,7) — (X, 7) is the identity homeomorphism, then so is
e

Proof. The continuity of the map f.:(7(X),w8;) = (7(Y), wb,) was
proved already. And the commutativity of the diagram follows from the
next fact.

Fo(&) ={UIFU) € Gy ={Ulp e f1(U) € ¢}
={Ulf(p) € U.f71(U) € ¢} = {U|U € fu(¢), f(p) € U}
= f*(of(p)'
All other statements follow directly from the definitions. O
Additionally, if f is open and closed and w € wf(f~1(G)), then there
is a f-open O in (X,w) such that O C f~}(G). By Theorem 1.5 ([3]),

f(0) is B-open in (X, fi(w)) such that f(O) C G, i.e., fi(w) € wO(G).
That is, w € f, H(wf(G)). Consequently we have the following theorem.
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THEOREM 3.7. If f : (X,7) — (Y,n) is a continuous and open and
closed surjective map, then for any open G in Y

FH(wo(G)) = wb(fH(G)).

Let (X,7) and (Y, () be topological spaces. We may assume that
7(X) and 7(Y') are given the topologies wf, and wf. respectively and
assume that 7(X xY’) is given topology w6 ¢. Then we get the following
result.

THEOREM 3.8. The multiplication X : 7(X) x 7(Y) —» 7(X x Y) is
continuous.

Proof. Let (a,f) € 7(X) x 7(Y). Then a x g € 7(X xY). If
wh(W) is a neighborhood of x(«a,f) = a x [, where W is open in
(X xY,7 x (). Then there exists an #-open set O in a x  such that
O C W. We may assume that O = Ox x Oy is a basic open set in
(T(X xY),a x B). Since O is f-open in (7(X X Y),a x ). Hence
projection Ox and Oy are f-opens in (X,«) and (Y, ) respectively.
Hence (a, 5) € 8(Ox) x 8(Oy). Moreover x(6(Ox) x 6(Oy)) C 6(O).
In fact, if § € (Ox) and v € 6(Oy), then Ox is f-open in (X,0)
and Oy is #-open in (Y,~). Since the product of f-opens is #-open [5],
O = Ox x Oy is f-open in (X x Y,§ x ) such that O C W. Hence
d x v € wd(W). This completes the proof. O

4. Topology on the family 7(X) related to the semi-regular
topology on X.

DEFINITION 4.1. Let (X, 7) be a topological space, and G € 7. Let
s(G) = {¢ € 7(X)|Gisregular — openin(}. Denote 3 = {s(G)|G € 7},
a family of subset of 7(X). Then there is exactly one topology s, on
7(X) with 8" as a subbasis. We will call this topology s, the semireg
topology induced by the topology 7.

THEOREM 4.2. If 7 < ( <1, then s; < s¢ < s7.

Proof. Let s(G) € sr. Then for any § € s(G), G is regular-open
in (X,9). Since 7 < ¢ < 1, G € 7 implies G € (. Consequently
d e s(G) € s¢. O

Similarly as in the € case if we consider s as a map from 7(X) to 7(X)
defined by s(n) = 7, then we have next result:
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THEOREM 4.3. Let(X,T) be a topological space. Then the induced
map
s (T(X), s7) = (7(X), s7)

Is continuous.

Proof. Let ¢ € 7(X) and s(K) is a neighborhood of s(¢) = (s where
K € 7. Then since (s = {U € (|U : regur —open in (X,()}, K is
a regular-open set in (X, (). Hence it is also regular-open in (X, ().
Consequently ¢ € s(K), i.e. s(K) is a neighborhood of ¢ which satisfied
that s(s(K)) C s(K). This completes the proof of theorem. O

Such map s : (7(X), s,) = (7(X), s;) will be called semi-regularization
operator. Moreover this map satisfies that the following corollary.

COROLLARY 4.4. s(CAn) < s(¢) As(n) and s(¢) V s(n) < s(CVn).

Proof. This corollary follows from the above definition and Theorem
3.1. O

Now we want to know the relations between s; and In,,. Let n €
s(G) € sr, then G € n, i.e. n € i(G). Hence it is natural that s(G) C
i(G). Let i(G) be a sub basic open in In,,. Then G € 75. Hence G is
regular-open in 7, that is G = int”G7. Hence if ¢ € i(G) and (X,7) is
regular, then by above Theorem 1.2, G is also regular-open in (X, 7).
Hence 7 € s(G). Thus we have;

THEOREM 4.5. Let (X, 7) is a regular space. If we denote T.cq(X)
by the subset of all regular topologies in 7(X). Then the subspace
Treg(X) of the space (7(X), sr) and the subspace T..q(X) of the space
(1(X), In,,) are identical.

THEOREM 4.6. If (X, () is semi-regular space, then the topology field
C:(X,1) = (7(X), sr) is continuous.

Proof. Let p €X and s(G) be a subbasic open neighborhood of {(p)=(.
Then G is regular-open in (X, (). This implies G is regular-open in
(X, ¢) because G is open set in (X, ) which contains the point p. More-
over since GeT, G is a neighborhood of p. Hence if ¢eG, ((q)=(,€5(G),
so that ((G) C s(G). This shows that topology field ¢ is continuous. [J

COROLLARY 4.7. If (X, () is regular space, then the topology field
C:(X,7) = (7(X), s;) Is continuous.

Let f:(X, 7) — (Y, n) be a continuous surjective map. If we define
amap foi(7(X),s7) = (7(Y),sy) by fu(w)={U C Y|f~H(U) € w},
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then f.(0) = 0 and f.(1) = 1. Let w € 7(X). For any subbasic open
neighborhood s(G) of fi(w) in (7(Y),s,), where G is open in (Y,7),
G is regular-open in (Y, fi(w)). Since f is continuous, it is naturally
almost-continuous. Hence f~1(G) is regular-open in (X,w). Thus w €
s(f~Y@)). Hence s(f~1(G)) is an open neighborhood of w in (7(X), s,).

Now we will prove that f.(s(f~1(G))) C s(G). Let ¢ € s(f~1(Q)).
Then f~(G) is regular-open in (X, (). Since naturally the map f :
(X,¢) = (Y, f«(C)) is continuous, G is regular-open in (Y, f.(¢)). This
implies that f,(¢) € s(G). Thus we have next theorem.

THEOREM 4.8. Let f:(X, 7) — (Y, n) be a continuous surjective
map. If we define a map f.:(7(X),s;) = (7(Y),sy) by fe(w)={U C
Y|f~1(U) € w}, then the map f, is continuous. If v < 6§, then f,(y) <
f«(6) and f.(7)>n. And for any semi-regular topology field ¢, the dia-
gram

(X,7) N (Y,n)
1< 1 £(Q)
(7(X), 5,) ELN (T(Y), 8y)

commutes. If, furthermore, (Z, \) is a topological space and g: (Y, n)
— (Z, \) is a map, then

(gof)*:g*of*'

Finally, if f:(X ,7) — (X, 7) is the identity homeomorphism, then so is
fe

Proof. The proof of this theorem is very closed to the case of 6 topo-
logical case. O

Additionally, if f is open and closed and w € s(f~(G)), then f~1(G)
is regular-open in (X,w). By above Theorem 1.5, G is regular-open in
(X, fe(w)), ie. fu(w) € s(G). That is, w € f71(s(G)). Consequently we
have the next result.

LEMMA 4.9. If f : (X, 7) — (Y,n) is continuous and open and closed
surjective map, then for any open G in Y
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