• Title/Summary/Keyword: topographical analysis

Search Result 446, Processing Time 0.027 seconds

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow (찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석)

  • Gu, Yun-Jeong;Song, Bonggeun;Lee, Wonhee;Song, Byunghun;Shin, Junho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.27-35
    • /
    • 2022
  • When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.

Distribution characteristics of Manchurian and China-Japan-Korea flora in Korean Peninsula

  • Kim, Nam Shin;Lim, Chi Hong;Cha, Jin Yeol;Cho, Yong Chan;Jung, Song Hie;Jin, Shi Zhu;Nan, Ying
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Background: The Korean Peninsula exhibits a characteristic graded floral distribution, with northern (Manchurian flora) and southern (China-Japan-Korea flora) lineage species coexisting according to climatic and topographical characteristics. However, this distribution has been altered by climate change. To identify ecosystem changes caused by climate change and develop appropriate measures, the current ecological status of the entire Korean Peninsula should first be determined; however, analysis of the current floral distribution in North Korea has been hampered for political reasons. To overcome these limitations, this study constructed a database of floral distributions in both South and North Korea by integrating spatial information from the previously established National Ecological Survey in South Korea and geocoding data from the literature on biological distributions published in North Korea. It was then applied to analyze the current status and distribution characteristics of Manchurian and China-Japan-Korea plant species on the Korean Peninsula. Results: In total, 45,877 cases were included in the Manchurian and China-Japan-Korea floral distribution database. China-Japan-Korea species were densely distributed on Jeju-do and along the southern coast of the Korean Peninsula. The distribution density decreased as the latitude increased, and the distributions reached higher-latitude regions in the coastal areas compared with the inland regions. Manchurian species were distributed throughout North Korea, while they were densely distributed in the refugia formed in the high-elevation mountain regions and the Baekdudaegan in South Korea. In the current distribution of biomes classified according to the Whittaker method, subtropical and endemic species were densely distributed in temperate seasonal forest and woodland/shrubland biomes, whereas boreal species were densely distributed in the boreal forest biome Korean Peninsula, with a characteristic gradation of certain species distributed in the temperate seasonal forest biome. Factor analysis showed that temperature and latitude were the main factors influencing the distribution of flora on the Korean Peninsula. Conclusions: The findings reported herein on the current floral distribution trends across the entire Korean Peninsula will prove valuable got mitigating the ecological disturbances caused by ongoing climate change. Additionally, the gathered flora data will serve as a basis for various follow-up studies on climate change.

Phytosociological Vegetation Classification and Community Characteristics in Maruguem (the Ridge Line) Area of Mt. Jirisan (Yuksipryeong to Cheonwangbong), the Baekdudaegan (백두대간 지리산권역(육십령-천왕봉 구간) 마루금의 식물사회학적 유형분류 및 군집 특성)

  • Song, Ju Hyeon;Kim, Ho Jin;Lee, Jeong Eun;Cho, Hyun Je;Park, Wan Geun;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this study, the forest vegetation structure in the Maruguem (ridge line) area from Yuksipryeong to Cheonwangbong, Baekdudaegan, was analyzed using vegetation classification, importance values, species diversity, and NMS. Data were collected using 373 quadrates in a Braun-Blanquet vegetation survey conducted from May to October 2020. Vegetation was classified into nine vegetation units, which were verified using DCA analysis. Vegetation units 1-5, which were grouped by sub-alpine region, showed high importance values, mainly for sub-alpine vegetation, such as Abies koreana, Picea jezoensis, Pinus koraiensis, and Betula ermanii. In Maruguem, which is not high above sea level, importance values for species such as Pinus densiflora and Quercus serrata were high due to the topographical characteristics of the ridge. The A. koreana community (vegetation unit 1-5), which had a relatively high average elevation, had higher species diversity compared with that of other vegetation units. According to NMS analysis, for abiotic environmental factors, there was a positive correlation between vegetation units 1, 2, 4, and 5 and elevation. Overall, this study describes all low-elevation area vegetation (P. densiflora and Lindera erythrocarpa) to high-elevation area vegetation (A. koreana and P. jezoensis) as well as the characteristics of the Baekdudaegan ridge vegetation that did not include valley vegetation.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Determination of Flood Reduction Alternatives for responding to climate change in Gyeongan Watershed (기후변화 대응을 위한 경안천 유역의 홍수저감 대안 선정)

  • Han, Daegun;Choi, Changhyun;Kim, Duckhwan;Jung, Jaewon;Kim, Jungwook;Kim, Soo Jun
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2016
  • Recently, the frequency of extreme rainfall event has increased due to climate change and impermeable area also has increased due to rapid urbanization. Therefore, we ought to prepare countermeasures for flood reduction to reduce the damage. To consider climate change, the frequency based rainfall was calculated according to the aimed period(reference : 1971~2010, Target period I : 2011~2040, Target period II : 2041~2070, Target period III : 2071~2100) and the flood discharge was also calculated by climate change using HEC-HMS model. Also, the flood elevation was calculated by each alternative through HEC-RAS model, setting 5 sizes of drainage pumps and reservoirs respectively. The flood map was constructed using topographical data and flood elevation, and the economic analysis was conducted for reduction of flood damage using Multi dimension - Flood Damage Analysis, MD-FDA. As a result of the analysis on the flood control effect, a head of drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of a detention pond. The flooded area shrunk by up to 32.64% from 0.3% and inundation depth also dropped. As a result of a comparison of the Benefit/Cost index estimated by the economic analysis, detention pond E in period I and pump D in period II and III were deemed appropriate as an alternative for climate change. The results are expected to be used as good practices when implementing the flood control works considering climate change.

The Analysis of the Ecological Characteristics of the Major Wetland Types in Seoul (서울시 주요 습지유형별 생태적 특성 분석)

  • 이경재;권전오;이수동
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.1
    • /
    • pp.44-55
    • /
    • 2003
  • The wetland in the city could be mainly divided into the deep water type and the abandoned paddy type, so this study was conducted to analyze characteristics between the two types of the wetland. The former sample site was located near the Olympic village in Songpa-gu of Seoul, and the latter sample site was in front of the Mt. Bukhan fortress in Eunpyeong-gu of Seoul. The actual vegetation, vascular plants, and avian fauna were researched. In the actual vegetation, the deep water type had the broad surface of water and the emerged plant as Phragmites communis have grown widely, but the abandoned paddy type had the narrow sur-face of water and hydrophyte as Persicaria thunbergii have grown widely. It might be judged because the water depth of the abandoned paddy type were shallow wholly. And the floating-leaved plants and the free-floating planktonic plants were not observed such as Nymphaea tetragona var. angusta, Lemna paucicostata in the abandoned paddy type wetland. The wild birds were mainly observed at the edge of the wetland(at the edge of woodland) in the abandoned paddy type, but were observed equally in the deep water type. 28 families 433 species were observed at the former site and 32 families 365 species were observed at latter site. It was judged that the various topographical structure(habitat diversity) might make all items various.

Development of a GIS Application Model for Evaluating Forest Functions (산림기능평가를 위한 GIS 응용모델의 개발)

  • Kim, Hyung-Ho;Chong, Se-Kyung;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • This paper aims to develop a GIS(Geographic Information System) application model as a decision-making support system in order to evaluate the potential of forests according to their functions, or to classify forest functions. The forest functions analyzed in this study are as follows: production of timber, stable supply of water resources, forest hazards prevention, recreation in forests, conservation of living conditions and natural environment. Using a model possible to evaluate the potential of each forest function and to assort forest functions by making priority-based decisions according to the functions, as well as allowing for various possible analysis environments, its application has been reviewed. Factors for assessing the forest functions could be built by using the following three categories: four maps-topographical map, vegetation map, forest site map and basic forest land use map-whose quantitative drawings had already been made; other self-established maps, such as one indicating the location of sawmills, location map of expressway interchanges, and spatial data of national population distribution map; and attribute data of population and precipitation. The GIS application developed here contributes to the evaluation of forest functions in all the subject areas by map units and national forest management districts based upon the assessment system.

  • PDF

Applicability Assessment of Hydrological Drought Outlook Using ESP Method (ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가)

  • Son, Kyung Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.581-593
    • /
    • 2015
  • This study constructs the drought outlook system using ESP(Ensemble Streamflow Prediction) method and evaluates its utilization for drought prediction. Historical Runoff(HR) was estimated by employing LSM(Land Surface Model) and the observed meteorological, hydrological and topographical data in South Korea. Also Predicted Runoff(PR) was produced for different lead times(i.e. 1-, 2-, 3-month) using 30-year past meteorological data and the initial soil moisture condition. The HR accuracy was higher during MAM, DJF than JJA, SON, and the prediction accuracy was highly decreased after 1 month outlook. SRI(Standardized Runoff Index) verified for the feasibility of domestic drought analysis was used for drought outlook, and PR_SRI was evaluated. The accuracy of PR_SRI with lead times of 1- and 2-month was highly increased as it considered the accumulated 1- and 2-month HR, respectively. The Correlation Coefficient(CC) was 0.71, 0.48, 0.00, and Root Mean Square Error(RMSE) was 0.46, 0.76, 1.01 for 1-, 2- and 3-month lead times, respectively, and the accuracy was higher in arid season. It is concluded that ESP method is applicable to domestic drought prediction up to 1- and 2-month lead times.