• 제목/요약/키워드: topic modeling techniques

검색결과 139건 처리시간 0.022초

Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석 (Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques)

  • 이소원;노미진;한무명초;김양석
    • 스마트미디어저널
    • /
    • 제13권1호
    • /
    • pp.36-44
    • /
    • 2024
  • 가상환경 기술의 발전과 COVID-19 팬데믹으로 언택트 문화가 부상함에 따라 메타버스(Metaverse)가 주목받고 있다. 본 연구에서는 최근 메타버스 서비스로 주목받는 "제페토" 애플리케이션에 대한 사용자들의 리뷰를 분석하여, COVID-19 팬데믹 이후 메타버스에 대한 요구사항의 변화를 확인하고자 하였다. 이를 위해 2018년 9월부터 2023년 3월까지 구글플레이스토어에 작성된 "제페토" 애플리케이션 리뷰 109,662건을 수집하였으며, LDA 토픽모델링 기법을 활용하여 토픽을 추출하고, COVID-19 팬데믹이 선언된 "2020년 3월 11일"을 기준으로 전·후로 토픽이 어떻게 변화했는지 Causal Impact 기법을 사용하여 분석하였다. 분석 결과 애플리케이션 기능적 문제(토픽1), 보안 문제(토픽2), 애플리케이션 내 가상화폐(Zem)에 대한 불만 사항(토픽3), 애플리케이션 성능(토픽4), 개인정보 관련 문제(토픽5) 등 5가지 토픽이 추출되었으며, 이들 중 보안 문제(토픽2)가 COVID-19 팬데믹에 가장 큰 영향을 받았음이 확인하였다.

Dynamic Text Categorizing Method using Text Mining and Association Rule

  • Kim, Young-Wook;Kim, Ki-Hyun;Lee, Hong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.103-109
    • /
    • 2018
  • In this paper, we propose a dynamic document classification method which breaks away from existing document classification method with artificial categorization rules focusing on suppliers and has changing categorization rules according to users' needs or social trends. The core of this dynamic document classification method lies in the fact that it creates classification criteria real-time by using topic modeling techniques without standardized category rules, which does not force users to use unnecessary frames. In addition, it can also search the details through the relevance analysis by calculating the relationship between the words that is difficult to grasp by word frequency alone. Rather than for logical and systematic documents, this method proposed can be used more effectively for situation analysis and retrieving information of unstructured data which do not fit the category of existing classification such as VOC (Voice Of Customer), SNS and customer reviews of Internet shopping malls and it can react to users' needs flexibly. In addition, it has no process of selecting the classification rules by the suppliers and in case there is a misclassification, it requires no manual work, which reduces unnecessary workload.

직무 리뷰 분석을 통한 산업군별 직무만족/존속 요인 및 직무불만족/이직 요인에 관한 연구 (A Study on Job Satisfaction/Retention Factors and Job Unsatisfaction/Turnover Factors by Industries using Job Reviews)

  • 이종서;김성근;강주영
    • 한국IT서비스학회지
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2017
  • Keeping good, talented people is one of the most significant factors in a company's success. HR analytics is an important area for applying big data analysis techniques to human resources. It provides organizational insight that enables effective management of employees, allowing management to reach their business goals quickly and efficiently. Job satisfaction and employee turnover analysis are the keys to HR analytics. Job review web services have been becoming popular. Because people exchange information about job satisfaction and turnover through these web services, useful information about HR Analytics is accumulated on the job review web sites. In this paper, we identified factors of employee retention by analyzing a Job Satisfaction/Retention group, and the factors of employee turnover by analyzing a Job Unsatisfaction/Turnover group. In order to do this, we first classified employees according to whether their self-reported job satisfaction or turnover was true. We collected and analyzed data from Jobplanet, a popular job review site. Through dominance analysis and LDA topic modeling, we found major factors, topics, and keywords of the classified groups by IT, service, and manufacturing domains. Our approach is a novel model to apply the analysis of reviews and text mining to the HR domain, and it will be practically helpful for setting new strategies that improve job satisfaction.

사용자의 선호도 정보를 활용한 직무 추천 시스템 연구 (A Study on the Job Recommender System Using User Preference Information)

  • 이청용;전상홍;이창재;김재경
    • 한국IT서비스학회지
    • /
    • 제20권3호
    • /
    • pp.57-73
    • /
    • 2021
  • Recently, online job websites have been activated as unemployment problems have emerged as social problems and demand for job openings has increased. However, while the online job platform market is growing, users have difficulty choosing their jobs. When users apply for a job on online job websites, they check various information such as job contents and recruitment conditions to understand the details of the job. When users choose a job, they focus on various details related to the job rather than simply viewing and supporting the job title. However, existing online job websites usually recommend jobs using only quantitative preference information such as ratings. However, if recommendation services are provided using only quantitative information, the recommendation performance is constantly deteriorating. Therefore, job recommendation services should provide personalized services using various information about the job. This study proposes a recommended methodology that improves recommendation performance by elaborating on qualitative preference information, such as details about the job. To this end, this study performs a topic modeling analysis on the job content of the user profile. Also, we apply LDA techniques to explore topics from job content and extract qualitative preferences. Experiments show that the proposed recommendation methodology has better recommendation performance compared to the traditional recommendation methodology.

토픽모델링을 활용한 신규간호사 관련 국내 연구동향 분석 (Research trend analysis of Korean new graduate nurses using topic modeling)

  • 박승미;이정림
    • 한국간호교육학회지
    • /
    • 제27권3호
    • /
    • pp.240-250
    • /
    • 2021
  • Purpose: The aim of this study is to analyze the research trends of articles on just graduated Korean nurses during the past 10 years for exploring strategies for clinical adaptation. Methods: The topics of new graduate nurses were extracted from 110 articles that have been published in Korean journals between January 2010 and July 2020. Abstracts were retrieved from 4 databases (DBpia, RISS, KISS and Google scholar). Keywords were extracted from the abstracts and cleaned using semantic morphemes. Network analysis and topic modeling were performed using the NetMiner program. Results: The core keywords included 'education', 'training', 'program', 'skill', 'care', 'performance', and 'satisfaction'. In recent articles on new graduate nurses, three major topics were extracted by Latent Dirichlet Allocation (LDA) techniques: 'turnover', 'adaptation', 'education'. Conclusion: Previous articles focused on exploring the factors related to the adaptation and turnover intentions of new graduate nurses. It is necessary to conduct further research focused on various interventions at the individual, task, and organizational levels to improve the retention of new graduate nurses.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

코로나19 판데믹 이후 컨테이너선 운임 상승 요인분석: 텍스트 분석을 중심으로 (Analysis of Factors Affecting Surge in Container Shipping Rates in the Era of Covid19 Using Text Analysis)

  • 나진성
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.111-123
    • /
    • 2022
  • 코로나19 판데믹 상황에서 컨테이너선 운임은 유례없는 큰 폭의 상승세를 보이고 있다. 컨테이너선 운임 상승 요인에 대해서 다양한 분석이 이루어지고 있으나, 비정형 데이터인 텍스트 자료를 활용한 분석은 전무한 상황이다. 따라서 본 연구에서는 관련 기사들을 대상으로 최근의 컨테이너선 운임 상승의 요인들을 텍스트 마이닝 기법중 하나인 네트워크 텍스트 분석과 LDA 토픽 모델링을 통해 파악하였다. 2020년 1월부터 2021년 7월까지 로이즈리스트에 게재된 기사들을 대상으로 텍스트 분석을 하였다. 분석 결과, 중국과 미국의 무역마찰, 글로벌 생산감소를 예측한 글로벌 선사들의 급격한 기항 횟수의 감소와 임시결항의 증가, 터미널 혼잡, 수에즈 운하 봉쇄와 같은 예기치 못한 사고들이 주요 원인으로 분석되었다.

KOREAN TOPIC MODELING USING MATRIX DECOMPOSITION

  • June-Ho Lee;Hyun-Min Kim
    • East Asian mathematical journal
    • /
    • 제40권3호
    • /
    • pp.307-318
    • /
    • 2024
  • This paper explores the application of matrix factorization, specifically CUR decomposition, in the clustering of Korean language documents by topic. It addresses the unique challenges of Natural Language Processing (NLP) in dealing with the Korean language's distinctive features, such as agglutinative words and morphological ambiguity. The study compares the effectiveness of Latent Semantic Analysis (LSA) using CUR decomposition with the classical Singular Value Decomposition (SVD) method in the context of Korean text. Experiments are conducted using Korean Wikipedia documents and newspaper data, providing insight into the accuracy and efficiency of these techniques. The findings demonstrate the potential of CUR decomposition to improve the accuracy of document clustering in Korean, offering a valuable approach to text mining and information retrieval in agglutinative languages.

키워드 기반 주제중심 분석을 이용한 비정형데이터 처리 (Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.521-526
    • /
    • 2017
  • 데이터는 데이터 형식이 다양하고 방대할 뿐만 아니라 그 생성 속도가 매우 빨라 기존의 데이터 처리 방식이 아닌 새로운 관리 및 분석 방법이 요구된다. 소셜 네트워크 상의 온라인 문서에서 인간의 언어로 쓰여진 비정형 텍스트에서 Text Mining기법을 사용하여 유용한 정보를 추출할 수 있다. 소셜미디어에 남긴 정치, 경제, 문화에 대한 메시지에 대한 경향을 파악하는 것이 어떤 주제에 관심을 가지고 있는지를 파악할 수 있는 요소가 된다. 본 연구에서는 주제 중심 분석 기법을 이용하여 주어진 키워드에 관한 온라인 뉴스를 대상으로 텍스트 마이닝을 수행하였다. LDA(Latent Dirichiet Allocation)를 이용하여 웹문서로부터 정보를 추출하고 이로부터 사람들이 실제로 주어진 키워드에 대하여 어떤 주제에 관심이 있고 관련된 핵심 가치 중 어떤 주제를 중심으로 전파되고 있는지를 분석하였다.

인공지능 스피커의 세대별 온라인 리뷰 분석을 통한 사용자 경험 요인 탐색 (Exploring user experience factors through generational online review analysis of AI speakers)

  • 박정은;양동욱;김하영
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.193-205
    • /
    • 2021
  • 인공지능 스피커 시장은 꾸준히 성장하고 있지만, 실제 스피커 사용자들의 만족도는 42%에 그치고 있다. 따라서, 본 연구에서는 인공지능 스피커의 세대별 토픽 변화와 감성 변화를 통해 사용자 경험을 저해하는 요소는 무엇인지 분석해 보고자 한다. 이를 위해 아마존 에코 닷 3세대와 4세대 모델에 대한 리뷰를 수집하였다. 토픽모델링 분석 기법을 사용하여 세대별로 리뷰를 이루는 주제 및 주제의 변화를 찾아내고, 딥러닝 기반 감성 분석을 통해 토픽에 대한 사용자 감성이 세대에 따라 어떻게 변화되었는지 살펴보았다. 토픽모델링 결과, 세대별로 5개의 토픽이 도출되었다. 3세대의 경우 스피커의 일반적 속성을 나타내는 토픽은 제품에 긍정적 반응 요인으로 작용했고, 사용자 편의 기능은 부정적 반응 요인으로 작용했다. 반대로 4세대에서는 일반적 속성은 부정적으로, 사용자 편의 기능은 긍정적으로 도출되었다. 이와 같은 분석은 방법론 측면에서 어휘적 특징뿐 아니라 문장 전체의 문맥적 특징이 고려된 분석결과를 제시할 수 있다는 것에 그 의의가 있다.