• Title/Summary/Keyword: tool interference

Search Result 251, Processing Time 0.03 seconds

CAD/CAM System for 5-Axis Machining of Marine Propeller (프로펠러 5축 가공을 위한 CAD/CAM 시스템)

  • Jae-Woong Youn;Jong-Hwan Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.51-62
    • /
    • 1998
  • In this paper, a CAD/CAM system for 5-axis machining of model propeller is introduced. This system has been developed under the environment of personal computer and Windows NT. In order to enhance the productivity, existing text-based design S/W was integrated into this graphic-based system. Non-Uniform Rational B-Spline method is used to represent the sculptured surface of propeller blades and hub using point data, and surface blending between blade and hub is realized in this system. For 5-axis machining of sculptured surface, tool/work collision and interference are checked and inverse kinematic analysis is performed to make NC data. In addition, tool and workpiece are animated on the PC monitor by preparing NC verification module. Finally, optimal cutting conditions are determined empirically and those cutting conditions are integrated into this S/W so that the whole process from design to machining can be done automatically.

  • PDF

Circular Path Generation Technique for Ball Bar Measurement by Simultaneous Movement of Two Axes (2 축 동시구동을 통한 볼바 측정용 원호경로 생성 방법)

  • Lee, Dong-Mok;Lee, Hoon-Hee;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.783-790
    • /
    • 2013
  • Circular path generation for ball bar measurement using the simultaneous movement of two axes with at least one rotary axis requires the execution of CAM software. However, a change in the machine type or measurement condition requires a new execution of the CAM software, which is cumbersome. This paper presents a circular path generation technique that does not require CAM software and is applicable to different types of driving axes with an arbitrary structural configuration of machine tools and any ball bar setup condition. Mathematical equations are derived for three cases using the proposed technique. In addition, to inspect the measurement feasibility for avoiding physical interference among the ball bar parts, a tilting angle calculation is proposed. The validity of the proposed technique was verified by performing a ball bar experiment with A and C as the simultaneous axes of a five-axis machine tool.

Primary user localization using Bayesian compressive sensing and path-loss exponent estimation for cognitive radio networks

  • Anh, Hoang;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2338-2356
    • /
    • 2013
  • In cognitive radio networks, acquiring the position information of the primary user is critical to the communication of the secondary user. Localization of primary users can help improve the efficiency with which the spectrum is reused, because the information can be used to avoid harmful interference to the network while simultaneity is exploited to improve the spectrum utilization. Despite its inherent inaccuracy, received signal strength based on range has been used as the standard tool for distance measurements in the location detection process. Most previous works have employed the path-loss propagation model with a fixed value of the path loss exponent. However, in actual environments, the path loss exponent for each channel is different. Moreover, due to the complexity of the radio channel, when the number of channel increases, a larger number of RSS measurements are needed, and this results in additional energy consumption. In this paper, to overcome this problem, we propose using the Bayesian compressive sensing method with a calibrated path loss exponent to improve the performance of the PU localization method.

Turbulent Flow Calculation around Yacht Sails (요트 세일 주위의 난류유동 계산)

  • Chi, Hye-Ryoun;Kim, Wu-Joan;Park, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.64-73
    • /
    • 2007
  • Turbulent flows around yacht sails were calculated to access the applicability of CFD for yacht design. Multi-block grid system was generated by using Gridgen package and Fluent was used to calculate flows around two sail system. A 30ft class sailing yacht designed and tested by KRISO was chosen. The interference effect between main and jib sails was analyzed. Pressure distribution on the sails was obtained and the center of effort was estimated. It was found that the jib angle affects the flow phenomena around a main sail due to the change of inflow angle. The location of center of effort is much different from the empirical formula based on a simple geometrical consideration. The calculated results are compared with the previous numerical and experimental results. Both CFD results are similar, but there are some discrepancies with experimental data. However, it is certain that CFD can be a very useful tool for yacht design.

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

Supply Route Analysis and Performance Evaluation of Dental High-Speed Air Turbine Handpiece (치과용 고속 에어터빈 핸드피스의 공급관로 분석 및 성능평가)

  • Han, Myung-Chul;Kim, Jung-Kwan;Choi, Myoung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.80-88
    • /
    • 2011
  • The dental high-speed air turbine handpiece is one of the most popular devices that have been widely used as the main means of cutting tooth structure and restorative material in dentistry. In consideration of usage and marketability of the dental handpiece, it is obviously worthy of investigating it. The goal of this paper is to establish the relationship between the air turbine speed and the supply route inside the handpiece. To do this, the Computational Fluid Dynamics(CFD) tool, Fine$^{TM}$/Turbo is used and the optimal supply route position is suggested from the simulation results. In addition, as an attempt for domestic product, the reverse engineering process of a high speed dental handpiece by 3D X-Ray CT equipment and wire cutting is presented for the Mark II model in NSK. In doing so, the 3D modeling of the handpiece parts is carried out with CATIA V5, and the interference between parts is examined. Finally, the result of performance test for the prototype produced in this research is presented.

FE-analysis of Shrink Fits and Internal Clearance for Ball Bearing of Machine Tool (공작기계용 볼 베어링의 억지끼워맞춤과 내부틈새변화에 관한 해석적 연구)

  • Kim, Woong;Lee, Choon-Man;Hwang, Young-Kug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.135-141
    • /
    • 2009
  • The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of clearance after installation to the interference fits, and thermal expansion must be considered. The purpose of this study is to grasp the internal clearance variation and behavior of a bearing which is a deep connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). Finite element analysis is performed by using commercial code ANSYS according to variation of thermal condition and rotational speeds. This paper presents correct negative internal clearance according to temperature during operation. Furthermore, interrelation between thermal expansion and contraction are presented to maintain adequate contact force for three type of spindle system (HSK-A60, HSK-40E, HSK-32E). The influence of the centrifugal force and Internal clearance variation of bearing is studied to operating rotational speed.

Experimental study on the shear thinning effects of viscosity index improver added lubricant by in-situ optical viscometer

  • Jang, Siyonl
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.117-124
    • /
    • 2003
  • Elastohydrodynamic lubrication (EHL) film is measured under the condition of viscosity index improver added to base oil. In-situ optical contact method using the interference principle make the measuring resolution of ~5 nm possible and enables the measuring range all over the contact area of up to ~300 $\mu\textrm{m}$ diameter. What is more important to the developed method by the author is that the measurement of EHL film thickness is possible in the range from 100 nm to 2 $\mu\textrm{m}$, which is the regime of worst contact failures in precision machinery. Viscosity index improver (VII) is one of the major additives to the modem multigrade lubricants for the viscosity stability against temperature rise. However, it causes shear thinning effects which make the film thickness lessened very delicately at high shear rate (over $10^5 s^{-1}$) of general EHL contact regime. In order to exactly verify the VIIs performance of viscosity stability at such high shear rate, it is necessary to make the measurement of EHL film thickness down to ~100 nm with fine resolution for the preliminary study of viscosity control. In this work, EHL film thickness of VII added lubricant is measured with the resolution of ~5 nm, which will give very informative design tool for the synthesis of lubricants regarding the matter of load carrying capacity at high shear rate condition.

Monopulse Receiver Design with Adaptive Transmission Speed on Ku-Band (적응형 전송속도를 갖는 Ku-대역 모노펄스 수신기 설계)

  • Jeong, Byeoung-Koo;Lee, Dae-Hong;Joo, Tae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.500-507
    • /
    • 2018
  • A three-channel radio frequency (RF) monopulse receiver using a data signal with a maximum transmission rate of 274 Mbps was designed. A monopulse receiver using a broadband communication signal was designed to operate in the Ku band, and it consists of a down-conversion module and a signal-processing module. To satisfy the performance of the proposed RF monopulse receiver, a signal-processing function less than the reception sensitivity for each transmission rate according to the adaptive transmission rate is required. To minimize signal reception and mutual frequency interference of various bandwidths, two RF filters were applied. To verify the satisfaction of system requirements, an AWR Corp. simulation tool was used.

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.