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Abstract 
In cognitive radio networks, acquiring the position information of the primary user is critical 

to the communication of the secondary user. Localization of primary users can help improve 

the efficiency with which the spectrum is reused, because the information can be used to avoid 

harmful interference to the network while simultaneity is exploited to improve the spectrum 

utilization. Despite its inherent inaccuracy, received signal strength based on range has been 

used as the standard tool for distance measurements in the location detection process. Most 

previous works have employed the path-loss propagation model with a fixed value of the path 

loss exponent. However, in actual environments, the path loss exponent for each channel is 

different. Moreover, due to the complexity of the radio channel, when the number of channel 

increases, a larger number of RSS measurements are needed, and this results in additional 

energy consumption. In this paper, to overcome this problem, we propose using the Bayesian 

compressive sensing method with a calibrated path loss exponent to improve the performance 

of the PU localization method.  

 
 
 

Keywords: Cognitive radio, Bayesian compressive sensing, path loss exponent, angle of 

arrival method, received signal strength. 
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1. Introduction 

A principal of cognitive radio technology [1] is that the secondary users (SUs) can use the 

idle spectrum to communicate without creating harmful interference to primary users (PUs), 

which is required because PUs are authorized with the priority for using the licensed band. The 

advantages of cognitive radio networks (CRNs) are higher utilization of the spectrum and 

lower cost, which leads to CRNs’ having many practical applications, such as tracking PUs 

and assisting the communication of SUs when spectrum is a scarce resource. In a CRN that 

estimates the PU location, several distributed SUs estimate or compute a relevant quantity, 

like energy or spectrum-sensing decision, and report it to the cluster heads (CHs). Then, the 

CHs make a final decision about the presence or absence of a PU and estimate its location if 

present. 

According to the information available, the localization system can be categorized into 

range-free and range-based algorithms [2]-[5]. In the range-free algorithm, the SUs make an 

independent decision on the presence or absence of the PU, without location information, and 

only transmit this one bit of information to the CH. The range-based algorithm includes the 

angle of arrival (AOA), direction of arrival (DOA), and received signal strength (RSS), which 

rely on having enough location information estimated by smart antenna techniques. 

In this paper, we propose a localization scheme using the communication between each 

group of SUs to calibrate the path loss exponent. After the sensing phase, this proposed 

localization scheme considers values of the path loss exponent for each pair of PU and SU to 

find the best-fit value of the path loss exponent that can be obtained at the PU nodes, so that the 

PU’s location precision is improved. 

The SU periodically sends a signal to other SUs, and it can calculate the angle of arrival 

from its neighbor SU and then further calculate the path loss exponent for that direction. After 

that, by using the temporary location of the PU, we can find the calibrated path loss exponent 

between each link of PU and SU. Finally, the Bayesian compressive sensing (Bayesian CS) 

method is used to estimate the precise location of the PU, in the localization phase. Note that 

the deployment area is divided into disjoint regions based on the communication range 

between SUs.  

The rest of the paper is constructed as follows. The general system model and background 

about the RSS-based method are presented in Section II. Section III describes the method to 

calibrate the path loss exponent in the CRN environment by applying the AOA model in each 

calibration region of the SUs. We also present the proposed Bayesian-CS based localization 

method using the calibrated path loss exponent to demonstrate the role of PU localization in 

interference. The simulation results are described in Section IV. Finally, conclusions are 

drawn in Section V. 
 

2. System Model 

In this paper, we assume that the cognitive radio network consists of SUs and PUs. Fig.1 

shows the general system model with the PU at ( , )i ix y , the cluster head (CH), and several 

SUs randomly distributed at ( , )j jx y , where j equals from 1 to SUN . Assume that the SUs’ 

locations are known and the location of PUs, CHs, and SUs are stationary during the 
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localization process. We assume that different PUs use disjoint frequency bands, so the 

localization of one PU is the focus because different PUs can be localized, respectively, in the 

same way.  

 

 
Fig. 1. System model 

The RSS of the receive node can often be modeled by the following log normal shadowing 

path loss model [6]: 

0 10

0

( )( ) ( ) ( ) 10 log ( )
 

   
 

d
PL d dB PL d dB dB

d
                                  (3) 

where ( )[ ] [ ] Pr[ ]PL d dB Pt dBm dBm   is the path loss at distance d from the primary 

transmitter. ( )oPL d is the path loss at a standard distance 0d , ( )oPL d is a fixed quantity and 

can be found using the free space model with 0d  set to 1 m in the small grid and 10 m in the 

large grid ( 1000m ) and 2  . χ is a random variable with a zero-mean Gaussian 

distribution and variance 2

n on a dB scale.  is the path loss exponent, which differs by 

environment.  The following Table.1 shows path loss exponents obtained in various radio 

environments [6]. 
Table 1. Some typical values of path loss exponent 

Environment Path loss exponent  () n  (dB) 

Free space 2 4 to 12 

Shadowed urban area 

Cellular radio 

3 to 5 9.6 

Urban area 

cellular radio 

2.7 to 3.5 8.7 

In building 

Line of sight 

1.6 to 1.8 5.2 

Blocked by building 4 to 6 6.8 

Blocked by factories 2 to 3 5.8 
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3. The Proposed Primary User Localization Scheme 

In this section, we investigate a calibration method for updating the path loss exponent that can 

improve the accuracy of the proposed localization algorithm. Because the path loss model 

depends on the power law for the path loss exponent, a small error in the path loss exponent 

will produce a significant error in distance measuring. In CRNs [7]-[8], we assume that the 

position information of all SUs are known. In this section, we use the AOA method as a 

calibration method in order to find the best temporal and spatial match for the path loss 

exponent around the SUs, instead of using an average value for the path loss exponent 

(Table.1), which may result in considerable error in measuring the distance during the 

localization process. Fig. 2 shows overall flow chart of the proposed localization scheme for 

CRNs, which is consisted of four phases: initiate phase, sensing phase, path-loss calibration 

phase and primary user localization phase. In next sub-sections, we will describe each phase in 

more details.  

 
 

Fig. 2. Overall flow of the proposed localization scheme 
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3.1 Initiate Phase 

SUs periodically broadcast messages containing their IDs and positions to all nodes in 

their transmission range; here, “broadcast” means on-hop broadcasting. That is, the message 

of a SU will be sent to other SUs within its transmission range. When an SU receives the 

messages, it records the RSS values in order to calculate the path loss of the power value, and 

it extracts the locations. Then, using the path loss value and the distance between any pair of 

SUs, the path loss exponent for that link can be found. In the above flow chart, ,( , )j j jID x y  

presents the ID and position of the j-th SU, and 0 j presents the path loss exponent between 

the path of senders 0SU  and receiver jSU . 

We assume that A is sender SU and B is receiver SU, and their location are 1 1( , )x y  and 

2 2( , )x y , respectively. The angle relationship between A and B is determined by: 

 

1 2 1

2 1
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y y
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x x
                                                              (2)

 
Generally, the angle of arrival is in the range (0 : 2 ) . The direction formed by the sender SU 

and receiver SU nodes can be obtained by: 
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                                             (3) 

Similarly, while an SU periodically broadcasts a message containing its ID and position, the 

directions from other SUs help the central SU to divide its surrounding space into sectors, 

where the central SU is the SU that calculates the path loss exponents of the links; any SU can 

play this role during calibration of the path loss exponent. 

 For an example, let’s assume that 
0SU is the central SU and is within the transmission 

ranges of 
1SU to 

4SU . Then, 
0SU  receives the messages and can calculate the angle of arrival 

from its neighbor SUs by using (3) and, further, can calculate the path loss exponent values 

between itself and its neighbor SUs as like Fig. 3.  

 
Fig. 3. Example for calculating the angles and path loss exponents between the central and other 

SUs 
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3.2 Sensing Phase 
In order to protect the PUs from harmful interference, the SUs have to sense the spectrum 

prior to their transmissions to make sure that it is available at that time instance. In this paper, 

we assume that the SUs employ the widely-used energy detection method to detect the PU’s 

signal, due to the method’s simplicity, speed, and excellent capability [10]-[11]. The principle 

of energy detection is based on the difference in energy between the PU transmission signal 

and the noise. The observed energy of the j-th SU is given as:  
2

1

( )
N

j j

k

y x k


                                                                     (4) 

where ( )jx k  is the k-th sample of the received signal at the j-th SU, and N  is the number of 

samples, 2N TW . T and W are the detection time and the signal bandwidth, respectively. 

According to the status of the PU, the received signal at the j-th SU is given by: 

 0

1

n( ),
( )

( ) n( ),


 


j

j

t H
x t

h s t t H
                                                             (5) 

where 0H  and 1H  represent the absence and presence of a PU, respectively, ( )s t  denotes the 

signal transmitted by the PU,
 jh  is the channel gain between the j-th SU in the cluster and the 

PU, and n( )t  denotes the additive noise at the SU. 

Suppose that the noise in each sample is a Gaussian random variable with a mean of zero 

and variance
2

n . Then, if the PU signal is absent, the sum of the squares of N Gaussian 

random variables
 

2/j ny  follows a central chi-square distribution with N degrees of freedom 

and a non-centrality parameter
jN : 

 
2

0

2 2

1

,

( ),





j N

n N

y H

N H



  
                                                        (6) 

where 
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 is the SNR of the PU signal at the SU, and the quantity 
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represents the transmitted signal energy over a sequence of N samples during each detection 

interval. 

A local decision of the SU can be made as follows:  

1

0
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j
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u
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                                                           (7) 

where   is the decision threshold of the SU. 

With a given false alarm probability fP , the threshold   is decided by: 
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Then, the detection probability of the k-th SU is calculated as follows: 
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where (.)Q is the tail probability of the standard normal distribution (also called the 

complementary cumulative distribution function), 

2

2
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  . 

Assume that the channel to CH is perfect. The local decisions are collected at the cluster 

head, and then a final decision is made. A final decision of the CH using the OR rule [12] can 

be made as follows: 

1
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otherwise






 




SUN

j

jc

H u
u

H

                                                           (10)

 

where SUN is the number of SUs in the cluster. 

 

3.3 Path-loss Calibration Phase 
In the case that a PU is present, its temporal location can be calculated using the RSS method 

with at least 3 SUs and mean path-loss exponent. However, the temporal location is imprecise, 

since the mean, rather than the calibrated, path-loss exponent is used to define the distances 

between the PU and its neighboring SUs. After obtaining the temporal location, the SU 

receives the signal from the PU in order to improve the precision of the location. One of the 

SUs, called the central SU, checks the angle of arrival by using the temporal location of the PU. 

Then, the path loss exponent for the link between the PU and the central SU is used, along with 

the distances between all pairs of SUs, to find the best-fit value of the path-loss exponent [12]. 

Fig. 4 shows the concept of this path-loss calibration: 
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Fig. 4. Example for the path-loss calibration 

In the Fig.4, the PU is in the sector formed by 0SU , 1SU , and 2SU . The 0SU  checks the 

angle of arrival based on the temporal location of the PU. To obtain the calibrated value of the 

path loss exponent over the link between PU and 0SU , the information of distance and path 

loss over links 0 1SU SU  and 0 2SU SU are used. The best value of the path loss exponent 

for the link between PU and 0SU  is calculated by:  
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                                                 (11)  

where 01PL and 02PL  are path loss values and 01D and 02D  are log-normal distances over the 

links 0 1SU SU and 0 2SU SU , respectively. The angles of arrival between PU and 1SU  

and between PU and 2SU  can be calculated respectively by: 
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and 
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3.4 Primary User Localization Phase 
In this section, we will show how localization in CRN could be viewed as a CS problem and 

formulated in terms of CS equations. We propose the RSS-based localization scheme 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 10, Oct. 2013                                2346 

Copyright ⓒ 2013 KSII 

composed of two phases: a training process, which is performed to collect the RSS 

measurement samples on a grid of SUs, and the reconstructing process, which reduces the area 

of interest to a smaller number of RSS measurements that then use Bayesian compressive 

sensing [14]-[16] to estimate the actual location of the PU. Fig.5 shows the proposed Bayesian 

CS-based localization system. 

 

 
Fig. 5. The proposed Bayesian CS-based localization scheme 

3.4.1 Training Process 

We consider a case in which the PUN ’s are located in an isotropic area, which is divided into 

a discrete grid with N points, but the exact PU locations are unknown. The goal is to determine 

the locations of PUs accurately, using only a small number of noisy RSS measurements and 

simple operations. This problem has a sparse nature, that is, PUN N . Furthermore, the 

number of measurements M is much smaller than the grid size N.  

In the localization problem, since the location of each PU is unique within the discrete 

spatial domain at a certain time, it can be modeled as an ideal sparse vector. Thus, the 

localization problem can be well formulated as a sparse matrix recovery problem in the 

discrete spatial domain. To perform localization, at first we need a training process which is 
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performed by interactions between the CHs and SUs as like Fig. 6. Through the training 

process, basic matrix measurement matrix and radio map will be built.  

 

 

Fig. 6. Cooperation between CHs and SUs during the training process 

A.  Basis matrix (Ψ ) 

During the training process, the time samples of RSS measurements are collected at known SU 

locations. The   time sample of the RSS that records the RSS value at the jth SU from the ith 

PU over the grid for all1 ,1i N j N     is denoted as , ( ), 1,..., ( 1)i j q q      where q 

is the total number of time samples collected.   

According to Section.2, the RSS propagation model is expressed as: 

  
4

[ ] [ ] [ ] 20logt

f
RSS dB P dB PL dB

c




 
    

 
                        (14)   

where tP  is the transmission power of the PU, PL  is the path loss model with calibration path 

loss exponent   mentioned in the previous chapter, and   is the zero-mean Gaussian 

distribution. 

Therefore, from the above equation, each value of ,i j corresponds to the mean value of 

the RSS signal that SU j receives from PU i at a specific location: 

 
ij, i j dRSS

                                                           
 (15)
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The RSS value recovered at each possible position point j in the grid that SU may occupy 

can be represented as 

 
1, 2, ,[ , ,..., ]

1,2,...,





T

j j j N j

j N

   
                                                 (16) 

where N is the size of the grid. The average RSS value over the time domain, at SU j from PU 

i , can be expressed as , ,1

1
( )

q

i j i j
q 

  


   with 1,..., , 1  q q . 

The basis matrix Ψ  is represented by  

1,1 1,2 1,

2,1 2,2 2,
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...

...

  

  

  

 
 
 
 
 
 

N

N

N N N N

Ψ                                      (17) 

The average of these time samples is computed on the CH. This basis matrix gives a 

sufficient representation of the spatial RSS properties in the cognitive radio environment. 

B.  Measurement Matrix (Φ ) 

Instead of measuring all the RSS values on the overall grid, only a small number of 

measurements are collected at several arbitrary grid points in which SUs are located. In the 

paper, we denote these measurements as measurement matrix Φ . Each row of Φ  represents 

the location of each SU where an element of 1 indicates the grid point in which the SU is 

located. If you denote 
j  as the j-th low vector of Φ  where 1,2,...,j M  and M  is the 

number of  SUs, then j(3)  indicates that the 
thj  SU node is located at grid 3 when the vector

j  is given as [0,0,1,...,0,...,0] . Thus the measurement matrix can be represented by 

MxN 1 2[ , ,..., ]   T

MΦ                                                   (18) 

C.  Radio Map 

Finally, Fig. 7 shows the framework for the creation of the radio map. The radio map is the 

table of [( , ), , ]j j j jx y   where ( , )j jx y represents the coordinates of the
thj SU. If no RSS 

measurements are found for a PU at SU due to the absence of any PU, the corresponding RSS 

entity in the radio map is set to a small value that implies zero.   
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Fig. 7. Example for creating radio map 

 

3.4.2 Reconstructing Process 

Without loss of generality, we can assume that one PU’s location can be formulated as a 

1-sparse vector 
i
θ where 

i
θ  is an N×1 vector with all elements equal to zero except  

( ) 1, 1,..., i n n Nθ where n  is the index of the PU where the PU is located. For instance, 

the vector 
(Nx1)

[0,1,0,...,0] T

i
θ  indicates that the thi  PU node is located at grid 2. Therefore, 

the locations of the detectable PUs over the grid will be a K-sparse matrix and are represented 

by Θ  such that we have 

PUNxN [ ,..., ,..., ]
PU1 i NΘ θ θ θ                                                (19) 

Fig.  8 shows the cooperation between CHs and SUs during the reconstruction process.  

Due to the wide deployment of SUs, the numbers of SUs are generally much greater than 

that required for localization, which leads to biased estimates. In the paper, we assume the use 

of M possible positions of SUs for localization, SUM N .  
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Fig.  8. Cooperation process between CHs and SUs during the reconstructing process 

Based on the above equation and notations, the x PUM N  matrix y represents the 

compressive noisy RSS measurements from PUN PUs at M SUs with each row vector 

indicating one measurement value. Finally, according to the CS theory, the compressive noisy 

RSS measurement is obtained by multiplying a random matrix by the original signal, which 

can be expressed as 

 

PU PU PU

PU PU

MxN MxN NxN NxN MxN

MxN NxN MxN

where ;

 

 

 

y Φ Ψ Θ ε

A X ε

A ΦΨ X Θ

                            (20)

 
 

3.4.3 Bayesian Compressed Sensing 

Compressed sensing is a technique for acquiring and reconstructing a signal utilizing the prior 

knowledge that it is sparse or compressible with limited (incomplete) measurements. 

When Φ  satisfies the restricted isometry property (RIP) [17], it requires only 
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( log( / ))PU PUM N N N to recover Θ  with high probability. The recovery algorithm can 

be expressed as:  

1min || || min | (j) | for 1, , N

subject to

 



 PU

j

ii iθ θ

y AX

                                                (21) 

which is called basic pursuit [18]. 

Compared to the theoretical optimization methods [19], Bayesian compressed sensing 

provides a better solution based on Bayes rule [20]-[21]. In Eqn. (20), the components of ε  

can be approximated as zero-mean uncorrelated Gaussian noise with unknown variance
2 . 

Therefore, the probability density function (pdf) of ε  is given by:  

2

1

( ) ( | 0, ) 



M

i

i

p Nε                                                      (22) 

The observation of noisy compressed measurement data y  is also a random process with 

conditional distribution, 
2( | , )p y X . Thus the conditional distribution of the observations 

becomes a Gaussian likelihood model [21] such that we have: 

 
2 2 /2 2

2

1
( | , ) (2 ) exp( || || )

2
 



  Mp y X y AX
                        

 (23) 

A widely used sparseness representation is the Laplace density function. However, 

because Laplace density is not conjugate, we adopt the zero-mean Gaussian used earlier in the 

following function: 

 

1

1

2
2/ 1/2

1

( | ) ( | 0, )

(2 ) exp( )
2


 











 





N

i

i

N
N n n

n

n

p N X

x

X α α

                                 (24) 

where Nx1α  is the N independent hyperparameter, which is the inverse variance, i.e., the 

precision of the prior Gaussian distribution. This approach is based on relevance vector 

machine (RVM) [22] . 

Assuming that α  is known, using Gaussian likelihood and Bayes’ rule, the conditional 

probability density function for 
NxNPU

X  can be represented as: 
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2
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1/22/ 1
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   N T
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p

p
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y α

Σ X μ Σ X μ

              (25) 

which is a Gaussian distribution ( , )N μ Σ  with mean and covariance given by 

 

 

NxNNP

NxN

2

2 1

NxN

1 2
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T

T

N

diag

μ ΣA y

Σ B A A

B α
                                                 (26) 

Therefore, the posterior density function of the observation y is a multivariate Gaussian 

distribution with mean [ ]E y Aμ  and covariance [ ] TCov y AΣA . 

 

3.4.4 Orthogonalization and Signal Recovery 

Since Φ  and Ψ  are generally coherent in the spatial domain, which violates the incoherence 

requirement for the CS theory, an orthogonalization process is applied so as to MxN A ΦΨ  

can satisfy RIP condition. That is, the measurement vector y  can be preprocessed by an 

orthogonalization operator T  such that  y Ty . The orthogonalization operator T  is 

defined as 

 
MxM  †

T GA                                                                 (27)  

where MxN ( ) T TorthG A  is an orthogonal basis for the range of 
T

A , and 
†

NxMA  is a 

pseudo-inverse matrix of A and 
†

A
1( ) T T

A A A . 

Thus, when Φ  satisfies the restricted isometry property (RIP), it requires only 

( log( / ))PU PUM N N N  for X  to be fully recoverable from 
NPMxN

y  with high probability, 

through the following 1l -minimization program:  

1
ˆ arg min || ||     such that

where



  

 

NR
X X y' GX ε

ε Tε
                                 (28) 
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4. Simulation Results 

In this section, to demonstrate the performance of the proposed scheme, we describe two other 

reconstruction methods: the basis pursuit (BP method) and Bayesian compressive sensing (the 

Bayesian CS method). We utilize Matlab and the 
1l norm packet provided in [23] to obtain the 

localization results.  

We consider a secondary network including 5 CHs and 50 SUs that are randomly 

distributed and whose positions are known, and a primary network including 10 PUs randomly 

distributed in a 100 meter square, whose positions are unknown. For this area, a grid-based 

structure is considered divided into cells of size 0.5m × 0.5m (N=400). A total of q time 

samples are collected 10 times during the training process for calculating the received signal 

strength, and 100 run times are conducted for performance evaluation.   

As the CS theory indicates regarding the restricted isometry property (RIP),  the minimum 

number of measurements is required as following: 

 
( log( / ))

(10log(400 /10)) 16



 

PU PUM N N N
                                             (29) 

Since 50 SUs take measurements, restricted isometry property (RIP) is satisfied in the 

simulation.  

In the following simulation, the localization error is measured according to the number of 

measurements needed, using the compressive sensing approach via the above three recovery 

programs: the proposed scheme, the Bayesian CS method, and the basis pursuit method. Given 

a false alarm probability of 0.01, the number of measurements varies from the minimum 

number of measurements to the number of total SUs. The localization error is defined as the 

average Euclidean distances between the true positions and the recovered positions of detected 

PUs as following: 

PUN
2 2

e i i i i

i 1PU

1
ˆ ˆP (x x ) (y y )

N 

                                          (30) 

As shown in Fig.9, the localization errors of with all three considered methods decrease 

sharply and become very small as the number of measurements increases. To observe the 

localization errors, here we only consider more than M=16 cases because the minimum 

number of measurements to satisfy RIP is 16 according to (29).  Our proposed scheme has far 

better performance than the basis pursuit method in term of the accuracy of localization. We 
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also observe that our proposed scheme has better performance than the Bayesian CS method, 

which uses only the given path-loss exponent. 

Fig.10 shows that the interference rate depends strongly on the accuracy of the 

localization method. Through simulation, it is verified that the improved accuracy of 

localization by the proposed method can improve the interference rate significantly as the 

maximum transmission range of the SU increase from 16m to 25m. 

 
Fig. 9. Localization error according to the number of measurements 

 
Fig. 10. The effect of PU localization on the interference rate according to the maximum transmission 

range of SUs  
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7. Conclusions 

In cognitive radio networks (CRNs), acquiring the position information of primary users 

(PUs) is very important to the communication of secondary users (SUs). Accurate localization 

of a PU can improve the efficiency with which the spectrum is reused because it can be used to 

avoid harmful interference in the network while simultaneity is exploited to improve the 

spectrum utilization. Despite its inherent inaccuracy, received signal strength(RSS) 

range-based method has been used as the standard tool for distance measurements in the 

location detection process. As the number of channels increases, a larger number of RSS 

measurements are required for localization, which results in additional energy consumption. In 

this paper, we focused our efforts on improving localization accuracy by using Bayesian 

compressive sensing (CS) with a calibrated path-loss exponent based on nearby SU’s 

information. Compared with other methods, the proposed scheme demonstrates more precise 

location of PUs with a lower number of noisy measurements. 
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