• Title/Summary/Keyword: tool improvement

Search Result 1,660, Processing Time 0.027 seconds

A Basic Study for Establishing of Numerical Range Criteria for Classification of Value Improvement Types (VE 가치향상 유형별 수치적 범위기준 설정을 위한 기초연구)

  • Nam, Keong Woo;Jang, Myunghoun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.74-75
    • /
    • 2018
  • VE, rather than just cost reduction tool, have established as a value enhancement tool of the construction industry. Value improvement types of VE proposal can show the effect of VE activities, also acts as an important element in which the owner adopts a proposal and confirms the results of the VE activities. However, problems in the process of quantification for VE proposal and ambiguous standards in classification of value improvement types is need to be supplemented. Accordingly, This study suggests the plan for establishing of numerical range criteria for classification of value improvement types of VE proposal. Implementing this plan will be able to improve the reliability and availability for VE activities.

  • PDF

Roundness Improvement and Exit Crack Prevention in Micro-USM of Soda-Lime Glass (유리의 미세 초음파 가공 시 입구 진원도 향상 및 출구 크랙방지)

  • Hong, Ji-Hoon;Kim, Duck-Hwan;Chu, Chong-Nam;Kim, Bo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1039-1045
    • /
    • 2007
  • Ultrasonic machining (USM) is suitable for machining hard, brittle and non-conductive materials such as silicon, glass and ceramics. Usually, when micro holes are machined on glass by USM, roundness of hole entrance is poor and cracks appear around the hole exit. In this paper the machining characteristics were studied for roundness improvement and exit crack prevention. From experiments, the tool bending and the shape of tool tip affect hole roundness. When the tool tip is hemispherical, good roundness of holes was obtained. The feedrate and the rotational speed of the tool affect the exit crack. With the machining conditions of 150 rpm in spindle speed and $0.5\;{\mu}m/s$ in feedrate, micro holes with less than $100\;{\mu}m$ in diameter were machined without an exit crack.

A Case Study on the Structural Design Improvement of a Mold M/C's Head Slides for Smooth Motion Regarding to Inertia and Moment Impact (금형가공센터 고속 이송체의 성능 안정화를 위한 설계개선 사례)

  • 최영휴;홍진현;최응영;이재윤;김태형;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.410-415
    • /
    • 2004
  • Heavy-weight head slides may cause excessive inertia impact & moment on the machine tool structure when they move or stop abruptly during operation. Consequently these inertia impact and unbalanced moment bring transient vibrations and rough sliding motions on the machine structure. Machine tool engineers have tried many kind of feed-slide designs in order to solve this problem; for example, the design optimization of the moving structure for minimum weight and maximum stiffness, box-in-box type slide design, and so on. In this article, force and moment equilibrium equations regarding to the inertia force & moment were derived for each one of a mold M/C's head slides. Furthermore, five different design configurations of head slide assembly were reviewed for its design improvement regarding to force & moment calculations and finite element structural analysis results.

  • PDF

A Study on Machined Surfaces Characteristics of Aluminum Alloy by AFM Measurement (AFM 측정법에 의한 알루미늄 합금의 초정밀 가공면 평가 연구)

  • Lee Gab-Jo;Kim Jong-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the machined surfaces characteristics of aluminum alloy by AFM(Atomic force microscope) measurement. The objective is contribution to ultra-precision machining by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

The Displacement Minimization of the tool Center Point by the Crossrail Structure Improvement of the Portal Machine (공구 중심점의 변위 최소화를 위한 문형 공작기계의 크로스레일 개선 연구)

  • Lee, Myung-Gyu;Song, Ki-Hyeong;Choi, Hag-Bong;Lee, Dong-Yoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.310-315
    • /
    • 2011
  • General portal machine represents a distinct weak spot concerning their structural behavior because of long protruding structure components, such as saddles and rams. The weak point causes the deformation of the machine tool and consequently rises a severe machining error. The purpose of this study is to improve the structural design of crossrail in order to minimize it's distortion. Tool Center Point (TCP) was chosen as a reference point for evaluating the distortion effect of a crossrail and topological optimization was adopted as a method of structural design improvement. The displacements of TCP according to the machining positions were investigated by structural analyses for both of original crossrail design and the improved one. The comparing results showed that the displacement of TCP could be reduced about 55% maximum.

Development of a tool management system (Bar Code를 이용한 공구관리 시스템 개발)

  • Kim, S.H.;Kim, D.H.;Lee, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.48-53
    • /
    • 1993
  • At present, the manufacturing industry is in a process of a great change. There is a demand for a variety of types and shorter product life. The change increases the number of different tools and frequencies of tool changes. For the most part, the tools are presetted and offset values are entered manually or via punched tapes to NC machines. Thus a large amount of capital is tied up in the tool area and considerable productive time is lost. Consequently, there is a need for improvement in tool management. This paper describes a computer controlled tool data management system which include: 1) tool identification with bar code. 2) computer aided management and updating of tool data. 3) tool data communication with tool presetter, CNC, etc.

  • PDF

Extraction of Research and Development Project for Improving the International Competitiveness of Machine Tool Industry (공작기계 산업의 국제 경쟁력 향상을 위한 연구개발과제 도출)

  • 이석우
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.19-30
    • /
    • 2001
  • Machine tool (Mother machine) is the basis of industrial development and it largely has an effect on the quality improvement and Productivity improvement of machinery products because it demands high technical abilities such as design, machining. control and assembling which reflect the technical level of a country. But, in case of domestic companies. it is difficult to secure good engineers and enough fund for developing machine tool, which can not narrow the gap with advanced machine tool manufacturing companies. Therefore, this Project focused on the extraction of research and development project to improve the international competitiveness of machine tool industry through comprehending problems that domestic companies have and investigating the research trend in domestic and international countries.

  • PDF

A Study on the Improvement of Performance for High Speed Cutting Tool using Magnetic Fluid Polishing Technique (자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구)

  • Cho, Jong-Rae;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • The magnetic fluid polishing technique can polish the tool of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. Therefore, we producted the magnetic fluid polishing device in order that mirror like finishing processes the tool surface. In order to a polishing condition selection, polishing characteristic was estimated by polishing conditions which are magnetic flux density, polishing speed, grain size, magnetic fluid. The tool was polished to the selected polishing condition. The result to evaluate the polished tool's performance with the cutting force and tool wear, the polished tool's performance was improved compared with the tool not to polish.