• Title/Summary/Keyword: tomato cultivation

Search Result 177, Processing Time 0.021 seconds

Studies on the Effect of heavy Metal on the Growth of Various Plants 1. The Effect of Cadmium and Lead (수종식물의 생육에 미치는 중금속의 영향에 관한 연구 1. Cadmium, Lead 의 영향)

  • Kim, Byung Woo
    • The Korean Journal of Ecology
    • /
    • v.5 no.4
    • /
    • pp.176-186
    • /
    • 1982
  • Uptake and effects of treated Cd and Pb in rose moss and tomato were studied in pot cultures. Three horticulural plants on the roadside were tested to determine the contents of heavy metals in plant parts. Yields of rose moss were increased by the increase Pb concentrations in soil. Yields of rose moss by Cd treatment were decreased in 1, 000 ppm group, but increased in 500 ppm group. Portulaca grandiflora Hook. proved to be tolerent of Pb and Cd added in soil. Yields of tomato were decreased by an incrase of Pb concentration in soil, and tomato proved to be weak for Pb added in soil. Pb contents in root, stem, leaf, and flower and seed of rose moss were increased by an in crease of Pb concentration in soil Pb content in root was the highest among them. Pb content was the highest in root of tomato, but the lowest in the stem. Among the heavy metal contents metal contents of three horticultural plants collected by roadside, it was the Chrysanthemum which had the highest contents of heavy metal among them. The heavy metal contents in stem were less than in the other plnat parts in all three plants. The number of flowers in rose moss was decreased by an increase of Pb, and Cd concentration in soil, but in tomato it was increased by an increase of Pb concentration in soil. Amount of rose moss seeds which were collected after cultivation was decreased by Pb, and Cd treatment in soil.

  • PDF

Evaluation of Antibiotics Resistance for Human-harmful Bacteria Isolated from Eco-friendly and Practical Cultivation Farms of Hot Pepper and Tomato (고추 및 토마토 친환경 및 관행재배지에서 분리한 인체 유해세균의 항생제 저항성 평가)

  • Lee, Sung-Hee;Do, Jiwon;Kim, Seong Kyeom;Oh, Kwang Kyo;Park, Jae-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.31 no.4
    • /
    • pp.381-394
    • /
    • 2023
  • This study was conducted to monitor the antibiotics resistance of human-harmful bacteria isolated in the agricultural environment for hot peppers (Capsicum annuum) and tomato (Lycopersicon esculentum). As a result, we isolated 120 bacterial species (34 on fruits, 48 in soil, 21 in water, and 17 in manure), identified them with the 16S rRNA sequence, analyzed minimum inhibitory concentration (MIC) for 26 antibiotics using Sensititre ARIS Hi-Q system and then evaluated whether each bacterial genus acquired resistance for the tested antibiotics or not, according to the CLSI criteria. From difference in MIC between eco-friendly (EFM) and practical (PFM) cultivation farms, Klebsiella spp. isolated from EFM was resistant to ampicillin (AMP) and nalidixic acid (NAL), and that isolated from PFM was resistant to streptomycin (STR) and tetracycline (TET). Enterobacter spp. isolated from EFM was resistant to AMP and azithromycin (AZI), and that isolated from PFM was resistant to AMP, AZI, and STR. Meanwhile, Pseudomonas spp. isolated from EFM and PFM were all resistant to AMP, AZI, cefotaxime (FOT), cefoxitin (FOX), ceftriaxone (AXO), CHL, NAL, and STR. Staphylococcus spp. isolated from EFM and PFM were resistant to gentamycin (GEN), STR, and kanamycin (KAN), and in particular, that from EFM showed resistance for erythromycin (ERY). In conclusion, our study suggested that EFM lead STR antibiotics resistance for human-harmful bacteria to decrease, because only the bacteria isolated from hot pepper and tomato crop with PFM have showed resistance against STR antibiotics, regardless of bacterial genus.

Effect of Agricultural Organic Materials Using Sulfur and Oil on Insect Control in Pepper and Tomato (오일제제, 유황제제를 활용한 고추, 토마토 해충방제 효과)

  • Nam, Chun-Woo;Cho, Young-Sang;Moon, Hee-Ja;An, Se-Woong;Seo, Tae-Cheol;Chun, Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.737-747
    • /
    • 2017
  • This experiment was carried out to determine the optimal concentration of agricultural organic materials using sulfur and oil for the insect pest control in pepper and cherry tomato cultivation. The control value of aphids and Oriental tobacco budworm (OTB) was examined one day after spraying with sulfur preparation (SP) (0.33~0.17%), oil preparations (OP) (2.00~0.33%), SP+OP, OP+ginkgo leaf extracts (GLE), SP+OP+GLE on the "Super Manidaa"pepper. The aphid control in pepper was complete by applications of SP+OP (0.25+1.00%) in the early growth stage and the control value was above 98.1% by the application of OP+GLE (1.00+1.00 %), SP+OP+GLE (0.25+1.0+1%), SP+OP+GLE (0.25+1.0+0.5%) in the middle to late growth stage while showing 0% in the control treatment. The OTB was completely controlled by the 3 times application with the high concentration of SP+OP (0.25+1.00%) in pepper cultivation. This result indicates that the oil and the sulfur preparations should be applied at low concentration before insect pests do not appeared, and then sprayed at the high concentration after they appear at pepper plant. The greenhouse whitefly in 'Minichal' tomatoes was completely controlled by three times application of SP (0.25~0.33), OP (1.0~2.00%). and all the treatment of SP+OP. However, continuous control with intervals of 1~3 days was considered favorable in the tomato plant. By the periodical control with agricultural organic materials using sulfur and oil, the greenhouse whitefly, which is a high-temperature insect pest, several moths of OTB did not occur at all. In conclusion, SP+OP (0.17%+0.33%) treatment was the most economical combination to control the aphid, OTB, and greenhouse whitefly in pepper and tomato cultivation when considering operating cost. In addition, we recommend that SP should not be sprayed on the plant shoots during the day time from July to August because of high temperature.

Estimation of Optimum Application Rate of Nitrogen Fertilizer Based on Soil Nitrate Concentration for Tomato Cultivation in Plastic Film House (토양의 질산태 질소 검정에 의한 시설재배 방울토마토의 질소 적정시비량 추정)

  • Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • This study was conducted to estimate the optimum application rate of fertilizer N based on $NO_3-N$ concentration in soils for tomato (Lycopersicon esculentum Mill.) cultivation in plastic film house. Tomato plants were cultivated with and without fertilizer in twelve soils which have different concentrations of $NO_3-N$ ranging from 46 to $344mg\;kg^{-1}$. Dry weight (DW) of above-ground part of tomato with no fertilizer ranged from 28.9 to $112.5g\;plant^{-1}$, depending on N-supplying capability of soils. The soil $NO_3-N$ was positively correlated with DW ($r=0.83^{**}$) and N uptake ($r=0.78^{**}$) by tomatoes in no fertilizer treatment, and negatively correlated with fertilizer effciencies resulted from the differences of DW and N uptake between fertilized and non-fertilized plot. The relationships between soil $NO_3-N$ concentration and DW, N uptake, and fertilizer efficiency were analyzed to determine the critical levels of soil $NO_3-N$ for tomato cultivation. The limit critical levels of soil $NO_3-N$ were estimated to be more than $280mg\;kg^{-1}$ for no application of fertilizer N and to be less than $50mg\;kg^{-1}$ for recommended application of fertilizer N. These critical levels of soil $NO_3-N$ were nearly the same as those calculated from regression equation between electrical conductivity(EC) and soil nitrate for critical levels of EC in recommendation equation of fertilizer N for tomato under the plastic film house by NationaI Institute of Agricultural Science and Technology. Consequently, the optimal application rate of ferdilizer N for tomato cultivation in the soils containing $NO_3-N$ concentration between $280mg\;kg^{-1}$ and $50mg\;kg^{-1}$ was estimated by the equation Y = -0.4348X+121.74, where Y is the percent(%) to the recommended application rate of N fertilizer and X is the soil $NO_3-N$ concentration ($mg\;kg^{-1}$).

Inactivation of Wilt Pathogen(Fusarium oxysporum f. sp.) using Plasma in Tomato Hydroponic Cultivation (토마토 수경재배에서 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp.) 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.323-332
    • /
    • 2024
  • Circulating hydroponic cultivation has the advantage of reducing soil and water pollution problems caused by discharge of fertilizer components because the nutrient solution is reused. However, cyclic hydroponic cultivation has a low biological buffering capacity and can cause outbreaks of infectious root pathogens. Therefore, it is necessary to develop technologies or disinfection systems to control them. This study used dielectric barrier discharge plasma, which generates various persistent oxidants, to treat Fusarium oxysporum f. sp., a pathogen that causes wilt disease. Batch and intermittent continuous inactivation experiments were conducted, and the results showed that the total residual oxidant was persistent in intermittent plasma treatment at intervals of 2-3 days, and F. oxysporum was treated efficiently. Intermittent plasma treatment did not inhibit the growth of tomatoes.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Genetic variation of Phytophthora infestans by RAPD analysis

  • Lee, Yun-Soo;Jeong young Song;Kim, Nam-Kyu;Nam Moon;Park, Hye-Jin;Kim, Hong-Gi
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.116.2-117
    • /
    • 2003
  • Late blight, caused by Phytophthora infestans, is one of the most destructive disease on potato and tomato cultivation. To analysis genetic diversity P. infeatans isolates were collected from potato and tomato fields in Korea. These pathogens contained both Al and A2 mating type with metalaxyl-resistant and sensitive isolates. Polymorphisms showed base on RAPD (Random Amplified Polymorphic DNA) in both potato and tomato isolates of P. infestans. Cluster analysis showed high level genetic variation in potato isolates of P. infestans than tomato isolates. P. infestans isolates were observed genetic diversity among them but not grouped among isolates related mating type and metalaxyl response. These results exhibited that P. infestans isolates showing genetic difference among them were distributed in Korea.

  • PDF

Culturing Simpler and Bacterial Wilt Suppressive Microbial Communities from Tomato Rhizosphere

  • Roy, Nazish;Choi, Kihyuck;Khan, Raees;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.362-371
    • /
    • 2019
  • Plant phenotype is affected by a community of associated microorganisms which requires dissection of the functional fraction. In this study, we aimed to culture the functionally active fraction of an upland soil microbiome, which can suppress tomato bacterial wilt. The microbiome fraction (MF) from the rhizosphere of Hawaii 7996 treated with an upland soil or forest soil MF was successively cultured in a designed modified M9 (MM9) medium partially mimicking the nutrient composition of tomato root exudates. Bacterial cells were harvested to amplify V3 and V4 regions of 16S rRNA gene for QIIME based sequence analysis and were also treated to Hawaii 7996 prior to Ralstonia solanacearum inoculation. The disease progress indicated that the upland MM9 $1^{st}$ transfer suppressed the bacterial wilt. Community analysis revealed that species richness was declined by successive cultivation of the MF. The upland MM9 $1^{st}$ transfer harbored population of phylum Proteobacteria (98.12%), Bacteriodetes (0.69%), Firmicutes (0.51%), Actinobacteria (0.08%), unidentified (0.54%), Cyanobacteria (0.01%), FBP (0.001%), OD1 (0.001%), Acidobacteria (0.005%). The family Enterobacteriaceae of Proteobacteria was the dominant member (86.76%) of the total population of which genus Enterobacter composed 86.76% making it a potential candidate to suppress bacterial wilt. The results suggest that this mixed culture approach is feasible to harvest microorganisms which may function as biocontrol agents.

Changes of Growth and Yield by using Rootstocks in Tomato (대목사용에 따른 토마토의 생육 및 수량 변화)

  • Lee, Hyewon;Hong, Kue Hyon;Kwon, Deok Ho;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.456-463
    • /
    • 2020
  • This research was conducted to examine the changes in yield and difference in growth, using rootstocks in tomatoes as the growth indicators. Seedlings of tomato 'Gama', were used as scion and non-grafted control, while 4 different grafted tomatoes 'Powerguard', 'T1', 'L1', and 'B.blocking' were used as rootstocks. The non-grafted and grafted plants were grown in hydroponics for long-duration cultivation under plastic greenhouse conditions. The total yield of grafted tomato 'Powerguard' and non-grafted tomato 'Gama' were 8,428 g and 7,645 g, respectively. The flowering position of grafted plants 'B.blocking' and non-grafted plants at the latter period were 17.58 cm and 14.92 cm, respectively. The results showed that the yield and the balance of the plant were improved until the end of the harvest by grafting. The difference in yield between non-grafted and grafted tomatoes was evident in the 19th cluster, 236 days after planting. Therefore using rootstocks could be advantageous for long-duration cultivation in tomatoes.

Changes of Fruit Cracking Percentage and Fruit Shape of 'Hei' Black Tomato with Increased Temperature (온도증가에 따른 흑색토마토 '헤이' 품종 과실의 모양 및 열과 발생률의 변화)

  • Moon, Doo-Gyung;Kim, So-Hee;Cho, Myeng-Whan;Yu, In-Ho;Ryu, Hee-Ryong;Lee, Eung-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.202-206
    • /
    • 2015
  • 'Hei' (Lycopersicon Esculentum Mill.) Black Tomato examined changes in fruit shape, fruit weight and cracking percentage with increasing temperature in high-rise tomato greenhouse during long-term cultivation in summer season. Fruit diameter is greater than fruit length from the first cluster to the ninth cluster. However, fruit length is longer than fruit diameter from the tenth cluster to the fifteenth cluster. Fruit shape index (L/D) is below 100% from the first cluster to the ninth cluster and above 100% from the tenth cluster to the fifteenth cluster. Fruit weight was decreased during temperature increasing in greenhouse. However, fruit cracking percentage was increased to temperature increasing during cultivation period. Thus, fruit shape, fruit weight and fruit cracking of 'Hei' black tomato were influenced by increasing of temperature in greenhouse during long-term cultivation.