• Title/Summary/Keyword: tomato bacterial wilt

Search Result 63, Processing Time 0.027 seconds

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

MicroTom - A Model Plant System to Study Bacterial Wilt by Ralstonia solanacearum

  • Park, Eun-Jin;Lee, Seung-Don;Chung, Eu-Jin;Lee, Myung-Hwan;Um, Hae-Young;Murugaiyan, Senthilkumar;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.239-244
    • /
    • 2007
  • MicroTom is a miniature tomato plants with various properties that make it as a model system for experiments in plant molecular biology. To extend its utility as a model plant to study a plant - bacterial wilt system, we investigated the potential of the MicroTom as a host plant of bacterial wilt caused by Ralstonia solanacearum. We compared the disease progress on standard tomato and MicroTom by two inoculation methods, root dipping and soil drenching, using a race 1 strain GMI1000. Both methods caused the severe wilting on MicroTom comparable to commercial tomato plant, although initial disease development was faster in root dipping. From the diseased MicroTom plants, the same bacteria were successfully reisolated using semiselective media to fulfill Koch's postulates. Race specific and isolate specific virulence were investigated by root dipping with 10 isolates of R. solanacearum isolated from tomato and potato plants. All of the tested isolates caused the typical wilt symptom on MicroTom. Disease severities by isolates of race 3 was below 50 % until 15 days after inoculation, while those by isolates of race 1 reached over 50% to death until 15 days. This result suggested that MicroTom can be a model host plant to study R. solanacearum - plant interaction.

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato

  • Islam, Amanul;Kabir, Md. Shahinur;Khair, Abul
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.137-148
    • /
    • 2019
  • In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.

Control of Tomato Bacterial Wilt by the Prototypes Extracted from Spent Media Substrate of Hericium erinaceus (노루궁뎅이 수확 후 배지 추출한 시제품의 토마토 풋마름병 방제 효과)

  • Lee, Sang Yeob;Kwak, Han Sol;Kang, Hee-Wan;Kang, Dae Sun;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.318-322
    • /
    • 2016
  • The prototypes, Rto-x+$Ca(NO_3)_2$, K-Ca, and Rto-$x{\beta}$, which were extracted from spent mushroom substrate of Hericium erinaceus, strongly inhibited the growth of Ralstonia solanacearum. The control efficacies of tomato bacterial wilt by treatment with Rto-x+$Ca(NO_3)_2$, K-Ca, and Rto-$x{\beta}$ were 87.4~92.4%, 46.0~100%, and 65.0~91.9%, respectively. These results indicate that Rto-x+$Ca(NO_3)_2$, K-Ca, and Rto-$x{\beta}$ have a potential as eco-friendly antibacterial materials for the control of tomato bacterial wilt caused by R. solanacearum.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials (가지대목 EG203을 이용한 토마토 풋마름병 경감효과)

  • Lee, Mun Haeng;Kim, Ji Kwang;Lee, Hee Kyoung;Kim, Keyng Jae;Yu, Seung Hun;Kim, Young Shik;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Wilt damage on tomato plants caused by Ralstonia solanacearum has been increased as the areas of tomato cultivation increased during the warm seasons. Also, the tomato rootstocks used to prevent the disease occurrence are not effective in the highly prevailing regions. Therefore, bacterial wilt resistant eggplant rootstock EG203, collected from AVRDC, was tested for its effect to deter the Ralstonia solanacearum wilt disease in the greenhouses at Buyeo Tomato Experiment Station from 2003 to 2005, and at Gumi, Kyungpook province from 2009-2011. Planting of eggplant rootstock EG203 should be done three weeks before the planting of tomato scions so that they can have similar stem diameter (2.5-3.0 mm) and can be easily grafted. Both insertion and inarching grafting showed 93-96% success rates. In the greenhouse tests at Buyeo Tomato Experiment Station from 2003 to 2005, eggplant rootstock EG203-grafted tomatoes showed the disease occurrence of 4.3%. On the other hand, non-grafted or other commercial rootstock-grafted tomatoes showed disease occurrence of 58.0% and 25.0-36.7%, respectively. In the greenhouse tests at Gumi, Kyungpook province in 2009, the disease occurrence on the EG203-grafted and non-grafted tomatoes was 2-5% and 20-80%, respectively. In 2010, at Gumi, Kyungpook province, when the wilt disease occurred slightly, the tomatoes grafted with tomato rootstocks B-blocking and Chung-gang, and eggplant rootstock EG203 showed similar disease severities, but EG203-grafted tomatoes formed lately cluster, resulting in the reduction of yield compared to tomato-grafted tomatoes. In 2011, at Gumi, Kyungpook province, when the wilt disease occurred severely, the tomato rootstocks 'B-blocking' and Chung-gang and eggplant rootstock EG203-grafted tomatoes showed disease occurrences of 60-85% and 0-1%, respectively. Therefore, it was concluded that tomato rootstocks 'B-blocking' and 'Chung-gang' are more useful in the areas contaminated with low levels of pathogen and eggplant rootstock EG203 is more useful in the areas contaminated with high levels of pathogen.

Analysis of Genetic and Pathogenic Diversity of Ralstonia solanacearum Causing Potato Bacterial Wilt in Korea

  • Cho, Heejung;Song, Eun-Sung;Lee, Young Kee;Lee, Seungdon;Lee, Seon-Woo;Jo, Ara;Lee, Byoung-Moo;Kim, Jeong-Gu;Hwang, Ingyu
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2018
  • The Ralstonia solanacearum species complex (RSSC) can be divided into four phylotypes, and includes phenotypically diverse bacterial strains that cause bacterial wilt on various host plants. This study used 93 RSSC isolates responsible for potato bacterial wilt in Korea, and investigated their phylogenetic relatedness based on the analysis of phylotype, biovar, and host range. Of the 93 isolates, twenty-two were identified as biovar 2, eight as biovar 3, and sixty-three as biovar 4. Applied to the phylotype scheme, biovar 3 and 4 isolates belonged to phylotype I, and biovar 2 isolates belonged to phylotype IV. This classification was consistent with phylogenetic trees based on 16S rRNA and egl gene sequences, in which biovar 3 and 4 isolates clustered to phylotype I, and biovar 2 isolates clustered to phylotype IV. Korean biovar 2 isolates were distinct from biovar 3 and 4 isolates pathologically as well as genetically - all biovar 2 isolates were nonpathogenic to peppers. Additionally, in host-determining assays, we found uncommon strains among biovar 2 of phylotype IV, which were the tomato-nonpathogenic strains. Since tomatoes are known to be highly susceptible to RSSC, to the best of our knowledge this is the first report of tomato-nonpathogenic potato strains. These results imply the potential prevalence of greater RSSC diversity in terms of host range than would be predicted based on phylogenetic analysis.

Effect of Spent Mushroom Substrates of Hericium erinaceum on Plant Pathogens of Tomato (노루궁뎅이버섯 수확후 배지 추출물의 토마토에 발생하는 식물병원균에 대한 생육억제 효과)

  • Lee, Sang Yeob;Kang, Hee-Wan;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.43 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • Water extract from spent mushroom substrate of Hericium erinaceus inhibited the mycelial growth of seven strain of tomato pathogenic fungi including Phytophthora capsici and the growth of Ralstonia solanacearum. Control efficacy of tomato bacterial wilt by treatment of 33.3% and 50% water extract from spent mushroom substrate of Hericium erinaceus was showed 58.3%, 83.3%, respectively.

Disease Responses of Tomato Pure Lines Against Ralstonia solanacearum Strains from Korea and Susceptibility at High Temperature (한국에서 분리한 Ralstonia solanacearum에 대한 순계 토마토의 병 반응과 고온에서의 발병)

  • Lee, Hyoung-Ju;Jo, Eun-Jeong;Kim, Nam-Hee;Chae, Young;Lee, Seon-Woo
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.326-333
    • /
    • 2011
  • This study evaluated disease resistance responses of pure lines of tomato plants at various temperature conditions against Ralstonia solanacearum strains isolated from Korea. Evaluation of six tomato lines with various strains of R. solanacearum showed that many strains can infect the resistant lines of tomato plants previously known as highly tolerant to bacterial wilt. One of the most virulent strains, SL341 (race 1 and biovar 4) caused severe infection on all six tomato lines, irrespective of temperature. In contrast, a moderately virulent strain SL1944 (race 1, biovar 4) showed the remarkable difference in disease progress on some resistant lines dependent on temperature. Moneymaker and Bonny Best were susceptible to SL1944 at all tested conditions with different temperature. However, tomato lines, such as Hawaii 7998, Hawaii 7996, Bblocking which were previously known as highly tolerant lines, were severely infected by SL1944 at relatively higher temperature ($35^{\circ}C$ for 14 hr light and $28^{\circ}C$ for 10 hr dark cycle). The disease progress at high temperature was much faster than those at low temprature on the same tomato line and those on Moneymaker and Bonny Best at the same high temprature. This result suggested that R. solanacearum strains isolated in Korea were highly virulent to bacterial wilt resistant tomato lines and some strains may cause severe infection on those plants at higher temperature.