• Title/Summary/Keyword: tobacco green cells

Search Result 8, Processing Time 0.023 seconds

Ultrastructural Changes During Programmed Cell Death of Tobacco Leaf Tissues Infected with Tobacco mosaic virus

  • Shin, Jun-Seong;Kim, Young-Ho;Chae, Soon-Yong
    • The Plant Pathology Journal
    • /
    • v.17 no.6
    • /
    • pp.315-324
    • /
    • 2001
  • Tobacco (Nicotiana tabacum cvs.Xanthi-nc and NC 82) plants infected with Tobacco mosaic virus (TMV) were examined ultrastructurally. Local lesions produced by TMV were sunken and withered. The plants were subjected to temperature shift (TS), a method to produce programmed cell death (PCD), by placing the infected plants initially at high temperature (35$^{\circ}C$) for 2 days and then shifting them to greenhouse temperature (22-27$^{\circ}C$). As a result, expanded lesions around the original necrotic lesions were produced. The expanded area initially had no symptoms, but it withered and became necrotic 15 h after TS. No ultrastructural changes related to PCD were noted at 0 h after TS in Xanthi-nc tobacco tissues as well as in healthy and susceptible tobacco tissues infected with TMV, At 6 h after TS, chloroplasts were convoluted and cytoplasm began to be depleted; however no necrotic cells were found. At 17 h after TS, ground cytoplasm of affected cells was completely depleted and chloroplasts were stacked together with bent cell wall or dispersed in the intracellular space. Necrotic cells were also observed, containing virus particles in the necrotic cytoplasm. There were initially two types of symptoms in the expanded lesions: chlorosis and non-chlorosis (green). Abundant TMV particles and X-bodies were only found in the chlorotic tissue areas. These results suggest that PCD by TMV infection may start with the wilting of cells and tissues before necrotic lesion formation.

  • PDF

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF

Effect of a Sudden Increase in Light Intensity on Normalized Difference Vegetation Index (NDVI) Reflected from Leaves of Tobacco (급격한 광도 변화가 담배 잎에서 반사되는 Normalized Difference Vegetation Index에 미치는 영향)

  • Suh, Kyehong
    • Journal of Environmental Science International
    • /
    • v.26 no.4
    • /
    • pp.543-547
    • /
    • 2017
  • Normalized Difference Vegetation Index (NDVI) has played an important role in assessing green plant biomass through remote sensing on global scale since the early 1970s. The concept of NDVI is based on the fact that green plants show higher reflection in near-infrared region than in visible region of the electromagnetic spectrum. However, it is well known that the relocation of chloroplasts in plant leaf cells may dramatically change the optical properties of plant leaves. In this study I traced the changes in the reflectance and transmittance properties of Tobacco leaves at the wavelengths of 660 and 800 nm after a sudden increase in light intensity. The results showed that NDVI of leaves gradually decreased from 72.7% to 69.9% when exposed to a sudden increase in light intensity from 30 to $1,200{\mu}mol/m^2{\cdot}s$. This means that the error resulting from the physiological status of the plant should be accounted for a more precise understanding of ground truth corresponding to the data from the remotely acquired images.

Enzyme Activity and Gene Expression of Cytochrome P450 Involved in Capsidiol Biosynthesis in Solanaceae Plants (가지과식물에서 Capsidiol 생합성에 관여하는 Cytochrome P450 유전자의 발현과 효소활성)

  • Kwon, Soon-Tae;Hasegawa, Paul
    • Korean Journal of Plant Resources
    • /
    • v.21 no.2
    • /
    • pp.139-143
    • /
    • 2008
  • Enzyme activity and expression of cytochrome P450 gene involved in the pathway of capsidiol biosynthesis were compared in five different solanaceae plants such as red pepper, green pepper, tobacco, potato and egg plant. Base on genomic DNA and/or RT-PCR results, four solanaceae plants such as red pepper, green pepper, tobacco and egg plant possess P450 gene in the genome and specifically expressed by elicitor treatment. However, potato was appeared to have neither P450 nor cyclase gene in the genome. P450 genes did not show any expression in the plants under normal condition, but showed highly specific expression under elicitation condition in various organs and tissue such as leaf, root, stem and culture cells.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Enhanced conversion to cotinine from nicotine by green tea extract (녹차 추출물에 의한 니코틴의 코티닌으로 전이 촉진)

  • Kyung, Yoon-Joo;Lee, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.147-153
    • /
    • 2000
  • Cigarette smoking deals a harmful effect directly to smokers and even to non-smokers through environmental tobacco smoke. The major damaging component in cigarette smoke is nicotine which converts to various carcinogens. Among the carcinogenic metabolites, nitrosamine-4-(methylnitrosamino)-1- (3-pyridyl)-1- butanone (NNK) is responsible for many types of lung cancers. Recent studies report that activation of NNK is markedly inhibited in the presence of cotinine, a safer metabolite from nicotine. It is well known that tea extract have potentials to prevent cancers. This study aims to correlate green tea's potential for cancer prevention with an accelerated formation of cotinine. In the presence of tea extract, a nicotine to cotinine conversion was studied in established cell lines and xenopus oocytes. Among three lines of cell used, PLC/PRF5 and 293 cells showed a fast turnover from nicotine to cotinine while HepG2 cell line showed a marginal difference between groups treated and non-treated with tea extract. A microinjection procedure using Xenopus oocyte was utilized to probe for the effect of tea extract in accelerating nicotine conversion to cotinine. According to this procedure, tea extract's unusual potential for converting nicotine to cotinine is also substantiated. Overall, this present study indicated that tea extract have an unusual effect on conversion of nicotine to cotinine in cells.

  • PDF

Dormancy of Somatic Embryos Derived from the Cotyledon of Korean Ginseng

  • Yang Deok-Chun;Yoon Eui-Soo;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.130-134
    • /
    • 1999
  • Somatic embryos were induced directly from cotyledon explants of Korean ginseng (Panax ginseng C.A. Meyer) on Murashige and Skoog (MS) medium with 2,4-D, BAP, kinetin or lacking growth regulators. When somatic embryos formed on all media grew to cotyledonary stage, the further development of embryos was ceased and remained in white color. By gibberellic acid (over 1.0 mg/1 $GA_3$) treatment, all the somatic embryos turned rapidly to green and germinated within 3 weeks. Chilling treatment also induced the germination of somatic embryos. The effective temperature regime was $-2^{\circ}C$ for over 8 weeks but more higher temperature than $0^{\circ}C$ did not effective for germination of somatic embryos. Ultrastructural observation revealed that the cotyledon cells of somatic embryos without chilling or $GA_3$ treatment contained numerous lipid reserves, dense cytoplasm, proplastids and non-activated mitochondria with poorly differentiated internal structure, but the cotyledon cells of germinating somatic embryos after chilling or $GA_3$ treatment highly vacuolated and contained well-developed chloroplasts and active state of mitochondria enclosing numerous cristae. The above results indicate that in vitro developed somatic embryos of Panax ginseng may be dormant after mature similar to zygotic embryos.

  • PDF

Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening

  • Choi, Ilyeong;Ahn, Chang Sook;Lee, Du-Hwa;Baek, Seung-A;Jung, Jung Won;Kim, Jae Kwang;Lee, Ho-Seok;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.660-672
    • /
    • 2022
  • The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.