DOI QR코드

DOI QR Code

Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening

  • Choi, Ilyeong (Department of Systems Biology, Yonsei University) ;
  • Ahn, Chang Sook (Department of Systems Biology, Yonsei University) ;
  • Lee, Du-Hwa (Department of Systems Biology, Yonsei University) ;
  • Baek, Seung-A (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Jung, Jung Won (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Kim, Jae Kwang (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Lee, Ho-Seok (Department of Biology, Kyung Hee University) ;
  • Pai, Hyun-Sook (Department of Systems Biology, Yonsei University)
  • Received : 2021.11.16
  • Accepted : 2022.04.25
  • Published : 2022.09.30

Abstract

The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program (2018R1A6A1A03025607) and the Mid-Career Researcher Program (2022R1A2C1009088) from the National Research Foundation (NRF) of the Republic of Korea.

References

  1. Adaskaveg, J.A., Silva, C.J., Huang, P., and Blanco-Ulate, B. (2021). Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits. Front. Plant Sci. 12, 647035.
  2. Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G.B., Tanksley, S.D., and Giovannoni, J.J. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954-2965. https://doi.org/10.1105/tpc.105.036053
  3. Al-Babili, S. and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161-186. https://doi.org/10.1146/annurev-arplant-043014-114759
  4. Alexander, L. and Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039-2055. https://doi.org/10.1093/jxb/erf072
  5. Anderson, G.H., Veit, B., and Hanson, M.R. (2005). The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 3, 12.
  6. Baek, S.A., Im, K.H., Park, S.U., Oh, S.D., Choi, J., and Kim, J.K. (2019). Dynamics of short-term metabolic profiling in radish sprouts ( Raphanus sativus L.) in response to nitrogen deficiency. Plants (Basel) 8, 361.
  7. Barry, C.S., Llop-Tous, M.I., and Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979-986. https://doi.org/10.1104/pp.123.3.979
  8. Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters- Arts, M., Rossetto, P.B., Angenent, G.C., and de Maagd, R.A. (2012). The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24, 4437-4451. https://doi.org/10.1105/tpc.112.103283
  9. Bishop, G.J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D., and Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 96, 1761-1766. https://doi.org/10.1073/pnas.96.4.1761
  10. Bogre, L., Henriques, R., and Magyar, Z. (2013). TOR tour to auxin. EMBO J. 32, 1069-1071. https://doi.org/10.1038/emboj.2013.69
  11. Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. (2006). Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142, 21-27. https://doi.org/10.1104/pp.106.084624
  12. Burns, J., Fraser, P.D., and Bramley, P.M. (2003). Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62, 939-947. https://doi.org/10.1016/S0031-9422(02)00710-0
  13. Cucu, T., Huvaere, K., Van Den Bergh, M.A., Vinkx, C., and Van Loco, J. (2012). A simple and fast HPLC method to determine lycopene in foods. Food Anal. Methods 5, 1221-1228. https://doi.org/10.1007/s12161-011-9354-6
  14. Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolai, M., Bedu, M., Robaglia, C., and Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 8, 864-870. https://doi.org/10.1038/sj.embor.7401043
  15. Dobrenel, T., Caldana, C., Hanson, J., Robaglia, C., Vincentz, M., Veit, B., and Meyer, C. (2016). TOR signaling and nutrient sensing. Annu. Rev. Plant Biol. 67, 261-285. https://doi.org/10.1146/annurev-arplant-043014-114648
  16. Eriksson, E.M., Bovy, A., Manning, K., Harrison, L., Andrews, J., De Silva, J., Tucker, G.A., and Seymour, G.B. (2004). Effect of the Colorless non- ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol. 136, 4184-4197. https://doi.org/10.1104/pp.104.045765
  17. Esteban, R., Moran, J.F., Becerril, J.M., and Garcia-Plazaola, J.I. (2015). Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 119, 63-75. https://doi.org/10.1016/j.envexpbot.2015.04.009
  18. Fu, D.Q., Zhu, B.Z., Zhu, H.L., Jiang, W.B., and Luo, Y.B. (2005). Virus- induced gene silencing in tomato fruit. Plant J. 43, 299-308. https://doi.org/10.1111/j.1365-313X.2005.02441.x
  19. Fu, L., Liu, Y., Qin, G., Wu, P., Zi, H., Xu, Z., Zhao, X., Wang, Y., Li, Y., Yang, S., et al. (2021). The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature 591, 288-292. https://doi.org/10.1038/s41586-021-03310-y
  20. Fu, L., Wang, P., and Xiong, Y. (2020). Target of rapamycin signaling in plant stress responses. Plant Physiol. 182, 1613-1623. https://doi.org/10.1104/pp.19.01214
  21. Fujisawa, M., Nakano, T., Shima, Y., and Ito, Y. (2013). A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25, 371-386. https://doi.org/10.1105/tpc.112.108118
  22. Fujisawa, M., Shima, Y., Nakagawa, H., Kitagawa, M., Kimbara, J., Nakano, T., Kasumi, T., and Ito, Y. (2014). Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26, 89-101. https://doi.org/10.1105/tpc.113.119453
  23. Gao, Y., Wei, W., Fan, Z., Zhao, X., Zhang, Y., Jing, Y., Zhu, B., Zhu, H., Shan, W., Chen, J., et al. (2020). Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. J. Exp. Bot.71, 3560-3574. https://doi.org/10.1093/jxb/eraa131
  24. Gao, Y., Wei, W., Zhao, X., Tan, X., Fan, Z., Zhang, Y., Jing, Y., Meng, L., Zhu, B., Zhu, H., et al. (2018). A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. 5, 75.
  25. Gapper, N.E., McQuinn, R.P., and Giovannoni, J.J. (2013). Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 82, 575-591. https://doi.org/10.1007/s11103-013-0050-3
  26. Garapati, P., Xue, G.P., Munne-Bosch, S., and Balazadeh, S. (2015). Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol. 168, 1122-1139. https://doi.org/10.1104/pp.15.00567
  27. Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., and Fei, Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 68, 61-84. https://doi.org/10.1146/annurev-arplant-042916-040906
  28. Giovannoni, J.J. (2007). Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 10, 283-289. https://doi.org/10.1016/j.pbi.2007.04.008
  29. Guo, Y. and Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601-612. https://doi.org/10.1111/j.1365-313X.2006.02723.x
  30. Houben, M. and Van de Poel, B. (2019). 1-aminocyclopropane-1- carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10, 695.
  31. Ito, Y., Sekiyama, Y., Nakayama, H., Nishizawa-Yokoi, A., Endo, M., Shima, Y., Nakamura, N., Kotake-Nara, E., Kawasaki, S., Hirose, S., et al. (2020). Allelic mutations in the ripening-inhibitor locus generate extensive variation in tomato ripening. Plant Physiol. 183, 80-95. https://doi.org/10.1104/pp.20.00020
  32. Kaulfurst-Soboll, H., Mertens-Beer, M., Brehler, R., Albert, M., and von Schaewen, A. (2021). Complex N-glycans are important for normal fruit ripening and seed development in tomato. Front. Plant Sci. 12, 635962.
  33. Klee, H.J. (2002). Control of ethylene-mediated processes in tomato at the level of receptors. J. Exp. Bot. 53, 2057-2063. https://doi.org/10.1093/jxb/erf062
  34. Klee, H.J. and Giovannoni, J.J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41-59. https://doi.org/10.1146/annurev-genet-110410-132507
  35. Kumar, R., Khurana, A., and Sharma, A.K. (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 65, 4561-4575. https://doi.org/10.1093/jxb/eru277
  36. Kumar, R., Tamboli, V., Sharma, R., and Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem. 259, 234-244. https://doi.org/10.1016/j.foodchem.2018.03.135
  37. Lai, T., Wang, X., Ye, B., Jin, M., Chen, W., Wang, Y., Zhou, Y., Blanks, A.M., Gu, M., Zhang, P., et al. (2020). Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death. J. Exp. Bot. 71, 2995-3011. https://doi.org/10.1093/jxb/eraa067
  38. Lee, D.H., Park, S.J., Ahn, C.S., and Pai, H.S. (2017). MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell 29, 2895-2920. https://doi.org/10.1105/tpc.17.00563
  39. Leiva-Ampuero, A., Agurto, M., Matus, J.T., Hoppe, G., Huidobro, C., Inostroza-Blancheteau, C., Reyes-Diaz, M., Stange, C., Canessa, P., and Vega, A. (2020). Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. Micro-Tom). PeerJ 8, e9742.
  40. Li, C., Hou, X., Qi, N., Liu, H., Li, Y., Huang, D., Wang, C., and Liao, W. (2021). Insight into ripening-associated transcription factors in tomato: a review. Sci. Hortic. 288, 110363.
  41. Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K., and Grierson, D. (2020). Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol. 226, 460-475. https://doi.org/10.1111/nph.16362
  42. Liang, B., Zheng, Y., Wang, J., Zhang, W., Fu, Y., Kai, W., Xu, Y., Yuan, B., Li, Q., and Leng, P. (2020). Overexpression of the persimmon abscisic acid β-glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. Plant J. 102, 1220-1233. https://doi.org/10.1111/tpj.14695
  43. Lima, J.E., Carvalho, R.F., Neto, A.T., Figueira, A., and Peres, L.E.P. (2004). Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Sci. 167, 753-757. https://doi.org/10.1016/j.plantsci.2004.05.023
  44. Liu, M., Pirrello, J., Chervin, C., Roustan, J.P., and Bouzayen, M. (2015). Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 169, 2380-2390.
  45. Liu, Y., Shi, Y., Su, D., Lu, W., and Li, Z. (2021). SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato. Hortic. Res. 8, 3.
  46. Lopez-Vidal, O., Olmedilla, A., Sandalio, L.M., Sevilla, F., and Jimenez, A. (2020). Is autophagy involved in pepper fruit ripening? Cells 9, 106.
  47. Lu, S. and Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50, 778-785. https://doi.org/10.1111/j.1744-7909.2008.00708.x
  48. Ma, X., Balazadeh, S., and Mueller-Roeber, B. (2019). Tomato fruit ripening factor NOR controls leaf senescence. J. Exp. Bot. 70, 2727-2740. https://doi.org/10.1093/jxb/erz098
  49. Ma, X., Zhang, Y., Tureckova, V., Xue, G.P., Fernie, A.R., Mueller-Roeber, B., and Balazadeh, S. (2018). The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiol. 177, 1286-1302. https://doi.org/10.1104/pp.18.00292
  50. Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948-952. https://doi.org/10.1038/ng1841
  51. Marti, E., Gisbert, C., Bishop, G.J., Dixon, M.S., and Garcia-Martinez, J.L. (2006). Genetic and physiological characterization of tomato cv. Micro- Tom. J. Exp. Bot. 57, 2037-2047. https://doi.org/10.1093/jxb/erj154
  52. Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U. S. A. 99, 6422-6427. https://doi.org/10.1073/pnas.092141899
  53. Moreau, M., Azzopardi, M., Clement, G., Dobrenel, T., Marchive, C., Renne, C., Martin-Magniette, M.L., Taconnat, L., Renou, J.P., Robaglia, C., et al. (2012). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24, 463-481. https://doi.org/10.1105/tpc.111.091306
  54. Musseau, C., Just, D., Jorly, J., Gevaudant, F., Moing, A., Chevalier, C., Lemaire-Chamley, M., Rothan, C., and Fernandez, L. (2017). Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. 8, 988.
  55. Nath, A., Bagchi, B., Misra, L.K., and Deka, B.C. (2011). Changes in post- harvest phytochemical qualities of broccoli florets during ambient and refrigerated storage. Food Chem. 127, 1510-1514. https://doi.org/10.1016/j.foodchem.2011.02.007
  56. Oh, Y. and Kim, S.G. (2021). RPS5A promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata. Mol. Cells44, 911-919.
  57. Pinheiro, T.T., Peres, L.E.P., Purgatto, E., Latado, R.R., Maniero, R.A., Martins, M.M., and Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant. Plant Cell Rep. 38, 623-636. https://doi.org/10.1007/s00299-019-02393-2
  58. Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., Adir, N., and Lifschitz, E. (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13, 2687-2702. https://doi.org/10.1105/tpc.010293
  59. Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., and Lutts, S. (2019). Tomato fruit development and metabolism. Front. Plant Sci. 10, 1554.
  60. Robaglia, C., Thomas, M., and Meyer, C. (2012). Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr. Opin. Plant Biol. 15, 301-307. https://doi.org/10.1016/j.pbi.2012.01.012
  61. Ryabova, L.A., Robaglia, C., and Meyer, C. (2019). Target of rapamycin kinase: central regulatory hub for plant growth and metabolism. J. Exp. Bot. 70, 2211-2216. https://doi.org/10.1093/jxb/erz108
  62. Salem, M.A., Li, Y., Wiszniewski, A., and Giavalisco, P. (2017). Regulatory- associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J. 92, 525-545. https://doi.org/10.1111/tpj.13667
  63. Schepetilnikov, M. and Ryabova, L.A. (2018). Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. Plant Physiol. 176, 1095-1105. https://doi.org/10.1104/pp.17.01243
  64. Sharma, K., Gupta, S., Sarma, S., Rai, M., Sreelakshmi, Y., and Sharma, R. (2021). Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. Plant J.106, 95-112. https://doi.org/10.1111/tpj.15148
  65. Shikata, M. and Ezura, H. (2016). Micro-Tom tomato as an alternative plant model system: mutant collection and efficient transformation. Methods Mol. Biol. 1363, 47-55. https://doi.org/10.1007/978-1-4939-3115-6_5
  66. Stanley, L. and Yuan, Y.W. (2019). Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front. Plant Sci. 10, 1017.
  67. Tanaka, Y., Sasaki, N., and Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x
  68. Tang, X., Zhuang, Y., Qi, G., Wang, D., Liu, H., Wang, K., Chai, G., and Zhou, G. (2015). Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci. Rep. 5, 12240.
  69. Vrebalov, J., Pan, I.L., Arroyo, A.J.M., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S., Giovannoni, J., et al. (2009). Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21, 3041-3062. https://doi.org/10.1105/tpc.109.066936
  70. Wang, R., Lammers, M., Tikunov, Y., Bovy, A.G., Angenent, G.C., and de Maagd, R.A. (2020). The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 294, 110436.
  71. Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484. https://doi.org/10.1016/j.cell.2006.01.016
  72. Xiong, F., Dong, P., Liu, M., Xie, G., Wang, K., Zhuo, F., Feng, L., Yang, L., Li, Z., and Ren, M. (2016). Tomato FK506 binding protein 12KD (FKBP12) mediates the interaction between rapamycin and target of rapamycin (TOR). Front. Plant Sci. 7, 1746.
  73. Xiong, Y. and Sheen, J. (2013). Moving beyond translation: glucose-TOR signaling in the transcriptional control of cell cycle. Cell Cycle 12, 1989-1990. https://doi.org/10.4161/cc.25308
  74. Yazdani, M., Sun, Z., Yuan, H., Zeng, S., Thannhauser, T.W., Vrebalov, J., Ma, Q., Xu, Y., Fei, Z., Van Eck, J., et al. (2019). Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. Plant Biotechnol. J. 17, 33-49. https://doi.org/10.1111/pbi.12945
  75. Yokotani, N., Nakano, R., Imanishi, S., Nagata, M., Inaba, A., and Kubo, Y. (2009). Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J. Exp. Bot. 60, 3433-3442. https://doi.org/10.1093/jxb/erp185
  76. Yu, W., Peng, F., Xiao, Y., Wang, G., and Luo, J. (2018). Overexpression of PpSnRK1α in tomato promotes fruit ripening by enhancing RIPENING INHIBITOR regulation pathway. Front. Plant Sci. 9, 1856.
  77. Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., and Hawkesford, M.J. (2015). Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol. (Stuttg.) 17, 904-913. https://doi.org/10.1111/plb.12296
  78. Zhou, Y., Huang, W., Liu, L., Chen, T., Zhou, F., and Lin, Y. (2013). Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol. 13, 132.
  79. Zhuo, F., Xiong, F., Deng, K., Li, Z., and Ren, M. (2020). Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis. Int. J. Mol. Sci. 21, 2680.