Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2025

Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening  

Choi, Ilyeong (Department of Systems Biology, Yonsei University)
Ahn, Chang Sook (Department of Systems Biology, Yonsei University)
Lee, Du-Hwa (Department of Systems Biology, Yonsei University)
Baek, Seung-A (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Jung, Jung Won (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Kim, Jae Kwang (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Lee, Ho-Seok (Department of Biology, Kyung Hee University)
Pai, Hyun-Sook (Department of Systems Biology, Yonsei University)
Abstract
The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.
Keywords
carotenoid biosynthesis; fruit ripening; target of rapamycin complex; tomato; virus-induced gene silencing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U. S. A. 99, 6422-6427.   DOI
2 Nath, A., Bagchi, B., Misra, L.K., and Deka, B.C. (2011). Changes in post- harvest phytochemical qualities of broccoli florets during ambient and refrigerated storage. Food Chem. 127, 1510-1514.   DOI
3 Pnueli, L., Gutfinger, T., Hareven, D., Ben-Naim, O., Ron, N., Adir, N., and Lifschitz, E. (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13, 2687-2702.   DOI
4 Ryabova, L.A., Robaglia, C., and Meyer, C. (2019). Target of rapamycin kinase: central regulatory hub for plant growth and metabolism. J. Exp. Bot. 70, 2211-2216.   DOI
5 Sharma, K., Gupta, S., Sarma, S., Rai, M., Sreelakshmi, Y., and Sharma, R. (2021). Mutations in tomato 1-aminocyclopropane carboxylic acid synthase2 uncover its role in development beside fruit ripening. Plant J.106, 95-112.   DOI
6 Adaskaveg, J.A., Silva, C.J., Huang, P., and Blanco-Ulate, B. (2021). Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits. Front. Plant Sci. 12, 647035.
7 Alexander, L. and Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53, 2039-2055.   DOI
8 Barry, C.S., Llop-Tous, M.I., and Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979-986.   DOI
9 Bogre, L., Henriques, R., and Magyar, Z. (2013). TOR tour to auxin. EMBO J. 32, 1069-1071.   DOI
10 Cucu, T., Huvaere, K., Van Den Bergh, M.A., Vinkx, C., and Van Loco, J. (2012). A simple and fast HPLC method to determine lycopene in foods. Food Anal. Methods 5, 1221-1228.   DOI
11 Wang, R., Lammers, M., Tikunov, Y., Bovy, A.G., Angenent, G.C., and de Maagd, R.A. (2020). The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 294, 110436.
12 Eriksson, E.M., Bovy, A., Manning, K., Harrison, L., Andrews, J., De Silva, J., Tucker, G.A., and Seymour, G.B. (2004). Effect of the Colorless non- ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol. 136, 4184-4197.   DOI
13 Fu, L., Liu, Y., Qin, G., Wu, P., Zi, H., Xu, Z., Zhao, X., Wang, Y., Li, Y., Yang, S., et al. (2021). The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature 591, 288-292.   DOI
14 Fujisawa, M., Shima, Y., Nakagawa, H., Kitagawa, M., Kimbara, J., Nakano, T., Kasumi, T., and Ito, Y. (2014). Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26, 89-101.   DOI
15 Gapper, N.E., McQuinn, R.P., and Giovannoni, J.J. (2013). Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 82, 575-591.   DOI
16 Tanaka, Y., Sasaki, N., and Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54, 733-749.   DOI
17 Xiong, Y. and Sheen, J. (2013). Moving beyond translation: glucose-TOR signaling in the transcriptional control of cell cycle. Cell Cycle 12, 1989-1990.   DOI
18 Yu, W., Peng, F., Xiao, Y., Wang, G., and Luo, J. (2018). Overexpression of PpSnRK1α in tomato promotes fruit ripening by enhancing RIPENING INHIBITOR regulation pathway. Front. Plant Sci. 9, 1856.
19 Zhuo, F., Xiong, F., Deng, K., Li, Z., and Ren, M. (2020). Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis. Int. J. Mol. Sci. 21, 2680.
20 Ito, Y., Sekiyama, Y., Nakayama, H., Nishizawa-Yokoi, A., Endo, M., Shima, Y., Nakamura, N., Kotake-Nara, E., Kawasaki, S., Hirose, S., et al. (2020). Allelic mutations in the ripening-inhibitor locus generate extensive variation in tomato ripening. Plant Physiol. 183, 80-95.   DOI
21 Klee, H.J. and Giovannoni, J.J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45, 41-59.   DOI
22 Lai, T., Wang, X., Ye, B., Jin, M., Chen, W., Wang, Y., Zhou, Y., Blanks, A.M., Gu, M., Zhang, P., et al. (2020). Molecular and functional characterization of the SBP-box transcription factor SPL-CNR in tomato fruit ripening and cell death. J. Exp. Bot. 71, 2995-3011.   DOI
23 Li, C., Hou, X., Qi, N., Liu, H., Li, Y., Huang, D., Wang, C., and Liao, W. (2021). Insight into ripening-associated transcription factors in tomato: a review. Sci. Hortic. 288, 110363.
24 Lima, J.E., Carvalho, R.F., Neto, A.T., Figueira, A., and Peres, L.E.P. (2004). Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Sci. 167, 753-757.   DOI
25 Lopez-Vidal, O., Olmedilla, A., Sandalio, L.M., Sevilla, F., and Jimenez, A. (2020). Is autophagy involved in pepper fruit ripening? Cells 9, 106.
26 Ma, X., Zhang, Y., Tureckova, V., Xue, G.P., Fernie, A.R., Mueller-Roeber, B., and Balazadeh, S. (2018). The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato. Plant Physiol. 177, 1286-1302.   DOI
27 Giovannoni, J.J. (2007). Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 10, 283-289.   DOI
28 Fujisawa, M., Nakano, T., Shima, Y., and Ito, Y. (2013). A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening. Plant Cell 25, 371-386.   DOI
29 Fu, D.Q., Zhu, B.Z., Zhu, H.L., Jiang, W.B., and Luo, Y.B. (2005). Virus- induced gene silencing in tomato fruit. Plant J. 43, 299-308.   DOI
30 Fu, L., Wang, P., and Xiong, Y. (2020). Target of rapamycin signaling in plant stress responses. Plant Physiol. 182, 1613-1623.   DOI
31 Gao, Y., Wei, W., Zhao, X., Tan, X., Fan, Z., Zhang, Y., Jing, Y., Meng, L., Zhu, B., Zhu, H., et al. (2018). A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic. Res. 5, 75.
32 Garapati, P., Xue, G.P., Munne-Bosch, S., and Balazadeh, S. (2015). Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol. 168, 1122-1139.   DOI
33 Gao, Y., Wei, W., Fan, Z., Zhao, X., Zhang, Y., Jing, Y., Zhu, B., Zhu, H., Shan, W., Chen, J., et al. (2020). Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. J. Exp. Bot.71, 3560-3574.   DOI
34 Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., and Fei, Z. (2017). The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 68, 61-84.   DOI
35 Guo, Y. and Gan, S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46, 601-612.   DOI
36 Houben, M. and Van de Poel, B. (2019). 1-aminocyclopropane-1- carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front. Plant Sci. 10, 695.
37 Al-Babili, S. and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu. Rev. Plant Biol. 66, 161-186.   DOI
38 Anderson, G.H., Veit, B., and Hanson, M.R. (2005). The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 3, 12.
39 Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G.B., Tanksley, S.D., and Giovannoni, J.J. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17, 2954-2965.   DOI
40 Kaulfurst-Soboll, H., Mertens-Beer, M., Brehler, R., Albert, M., and von Schaewen, A. (2021). Complex N-glycans are important for normal fruit ripening and seed development in tomato. Front. Plant Sci. 12, 635962.
41 Klee, H.J. (2002). Control of ethylene-mediated processes in tomato at the level of receptors. J. Exp. Bot. 53, 2057-2063.   DOI
42 Leiva-Ampuero, A., Agurto, M., Matus, J.T., Hoppe, G., Huidobro, C., Inostroza-Blancheteau, C., Reyes-Diaz, M., Stange, C., Canessa, P., and Vega, A. (2020). Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. Micro-Tom). PeerJ 8, e9742.
43 Kumar, R., Khurana, A., and Sharma, A.K. (2014). Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 65, 4561-4575.   DOI
44 Kumar, R., Tamboli, V., Sharma, R., and Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chem. 259, 234-244.   DOI
45 Lee, D.H., Park, S.J., Ahn, C.S., and Pai, H.S. (2017). MRF family genes are involved in translation control, especially under energy-deficient conditions, and their expression and functions are modulated by the TOR signaling pathway. Plant Cell 29, 2895-2920.   DOI
46 Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K., and Grierson, D. (2020). Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol. 226, 460-475.   DOI
47 Baek, S.A., Im, K.H., Park, S.U., Oh, S.D., Choi, J., and Kim, J.K. (2019). Dynamics of short-term metabolic profiling in radish sprouts ( Raphanus sativus L.) in response to nitrogen deficiency. Plants (Basel) 8, 361.
48 Bemer, M., Karlova, R., Ballester, A.R., Tikunov, Y.M., Bovy, A.G., Wolters- Arts, M., Rossetto, P.B., Angenent, G.C., and de Maagd, R.A. (2012). The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24, 4437-4451.   DOI
49 Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. (2006). Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142, 21-27.   DOI
50 Bishop, G.J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J.D., and Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 96, 1761-1766.   DOI
51 Burns, J., Fraser, P.D., and Bramley, P.M. (2003). Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62, 939-947.   DOI
52 Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolai, M., Bedu, M., Robaglia, C., and Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 8, 864-870.   DOI
53 Dobrenel, T., Caldana, C., Hanson, J., Robaglia, C., Vincentz, M., Veit, B., and Meyer, C. (2016). TOR signaling and nutrient sensing. Annu. Rev. Plant Biol. 67, 261-285.   DOI
54 Esteban, R., Moran, J.F., Becerril, J.M., and Garcia-Plazaola, J.I. (2015). Versatility of carotenoids: an integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 119, 63-75.   DOI
55 Liang, B., Zheng, Y., Wang, J., Zhang, W., Fu, Y., Kai, W., Xu, Y., Yuan, B., Li, Q., and Leng, P. (2020). Overexpression of the persimmon abscisic acid β-glucosidase gene (DkBG1) alters fruit ripening in transgenic tomato. Plant J. 102, 1220-1233.   DOI
56 Pinheiro, T.T., Peres, L.E.P., Purgatto, E., Latado, R.R., Maniero, R.A., Martins, M.M., and Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the "Micro-Tom" tangerine mutant. Plant Cell Rep. 38, 623-636.   DOI
57 Schepetilnikov, M. and Ryabova, L.A. (2018). Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. Plant Physiol. 176, 1095-1105.   DOI
58 Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., and Lutts, S. (2019). Tomato fruit development and metabolism. Front. Plant Sci. 10, 1554.
59 Robaglia, C., Thomas, M., and Meyer, C. (2012). Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr. Opin. Plant Biol. 15, 301-307.   DOI
60 Salem, M.A., Li, Y., Wiszniewski, A., and Giavalisco, P. (2017). Regulatory- associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. Plant J. 92, 525-545.   DOI
61 Shikata, M. and Ezura, H. (2016). Micro-Tom tomato as an alternative plant model system: mutant collection and efficient transformation. Methods Mol. Biol. 1363, 47-55.   DOI
62 Tang, X., Zhuang, Y., Qi, G., Wang, D., Liu, H., Wang, K., Chai, G., and Zhou, G. (2015). Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci. Rep. 5, 12240.
63 Stanley, L. and Yuan, Y.W. (2019). Transcriptional regulation of carotenoid biosynthesis in plants: so many regulators, so little consensus. Front. Plant Sci. 10, 1017.
64 Vrebalov, J., Pan, I.L., Arroyo, A.J.M., McQuinn, R., Chung, M., Poole, M., Rose, J., Seymour, G., Grandillo, S., Giovannoni, J., et al. (2009). Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell 21, 3041-3062.   DOI
65 Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.   DOI
66 Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., and Hawkesford, M.J. (2015). Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol. (Stuttg.) 17, 904-913.   DOI
67 Xiong, F., Dong, P., Liu, M., Xie, G., Wang, K., Zhuo, F., Feng, L., Yang, L., Li, Z., and Ren, M. (2016). Tomato FK506 binding protein 12KD (FKBP12) mediates the interaction between rapamycin and target of rapamycin (TOR). Front. Plant Sci. 7, 1746.
68 Yazdani, M., Sun, Z., Yuan, H., Zeng, S., Thannhauser, T.W., Vrebalov, J., Ma, Q., Xu, Y., Fei, Z., Van Eck, J., et al. (2019). Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. Plant Biotechnol. J. 17, 33-49.   DOI
69 Yokotani, N., Nakano, R., Imanishi, S., Nagata, M., Inaba, A., and Kubo, Y. (2009). Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J. Exp. Bot. 60, 3433-3442.   DOI
70 Zhou, Y., Huang, W., Liu, L., Chen, T., Zhou, F., and Lin, Y. (2013). Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol. 13, 132.
71 Marti, E., Gisbert, C., Bishop, G.J., Dixon, M.S., and Garcia-Martinez, J.L. (2006). Genetic and physiological characterization of tomato cv. Micro- Tom. J. Exp. Bot. 57, 2037-2047.   DOI
72 Liu, M., Pirrello, J., Chervin, C., Roustan, J.P., and Bouzayen, M. (2015). Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 169, 2380-2390.
73 Liu, Y., Shi, Y., Su, D., Lu, W., and Li, Z. (2021). SlGRAS4 accelerates fruit ripening by regulating ethylene biosynthesis genes and SlMADS1 in tomato. Hortic. Res. 8, 3.
74 Lu, S. and Li, L. (2008). Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50, 778-785.   DOI
75 Ma, X., Balazadeh, S., and Mueller-Roeber, B. (2019). Tomato fruit ripening factor NOR controls leaf senescence. J. Exp. Bot. 70, 2727-2740.   DOI
76 Oh, Y. and Kim, S.G. (2021). RPS5A promoter-driven Cas9 produces heritable virus-induced genome editing in Nicotiana attenuata. Mol. Cells44, 911-919.
77 Manning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948-952.   DOI
78 Musseau, C., Just, D., Jorly, J., Gevaudant, F., Moing, A., Chevalier, C., Lemaire-Chamley, M., Rothan, C., and Fernandez, L. (2017). Identification of two new mechanisms that regulate fruit growth by cell expansion in tomato. Front. Plant Sci. 8, 988.
79 Moreau, M., Azzopardi, M., Clement, G., Dobrenel, T., Marchive, C., Renne, C., Martin-Magniette, M.L., Taconnat, L., Renou, J.P., Robaglia, C., et al. (2012). Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24, 463-481.   DOI