• Title/Summary/Keyword: titanium oxide film

Search Result 130, Processing Time 0.038 seconds

Characteristics of Gate Oxides with Cobalt Silicide Process (복합 코발트 실리사이드 공정에 따른 게이트 산화막의 특성변화)

  • Song, Oh-sung;Cheong, Seong-hwee;Yi, Sang-don;Lee, Ki-yung;Ryu, Ji-ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.711-716
    • /
    • 2003
  • Gate length, height, and silicide thickness have all been shrinking linearly as device density has progressively increased over the years. We investigated the effect of the cobalt diffusion during the silicide formation process on the 60$\AA$-thick gate oxide lying underneath the Ti/Co and Co/Ti bilayers. We prepared four different cobalt silicides, which have similar sheet resistance, made from the film structure of Co/Ti(interlayer), and Ti(capping layer)/Co, and peformed the current-voltage, time-to-break down, and capacitance-voltage measurements. Our result revealed that the cobalt silicide process without the Ti capping layer allowed cobalt atoms to diffuse into the upper interface of gate oxides. We propose that 100$\AA$-thick titanium interlayer may lessen the diffusion of cobalt to gate oxides in 1500-$\AA$ height polysilicon gates.

Synthesis of titanium-doped indium oxide (ITiO) films for solar cells application using RF magnetron sputtering technology (RF 스퍼터링에 의한 ITiO 박막 제작과 태양전지에의 응용)

  • Paeng, Sung-Hwan;Kwak, Dong-Joo;Sung, Youl-Moon;Lee, Don-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1485_1486
    • /
    • 2009
  • Transparent conductive metal oxide films of $In_{2-x}Sn_xO_3$ (ITiO) and $In_{2-x}Sn_xO_3$ (ITO) were deposited by RF magnetron sputtering at relatively low substrate temperature (~$300^{\circ}C$) and at high rate (~10nm/min). Electrical and optical properties of the films were investigated as well as film structure and morphology, as it is compared with the commercial F:$SnO_2$ (FTO) glass. Near infrared ray transmittance of ITiO is the highest for wavelengths over 1000nm, which can increase dye sensitized compared to ITiO and FTO. Dye-sensitized solar cells (DSCs) were fabricated using the ITiO, ITO and FTO. Photoconversion efficiency ($\eta$) of DSC using ITiO is 5.5%, whereas 5.0% is obtained from DSC with ITO, both at 100mW/$cm^2$ light intensity.

  • PDF

High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

ITiO films prepared by magnetic null discharge sputtering for DSCs application (자기중성방전 스퍼터에 의한 DSCs용 ITiO 박막제작)

  • Han, Deok-Woo;Endrowednes, Kuantama;Kwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1150-1151
    • /
    • 2008
  • Titanium-doped indium oxide (ITiO) films were prepared on soda-lime glass substrate using a magnetic null discharge (MND) sputter source. The ITiO thin films containing 10 wt.% Ti showed the minimum resistivity of ${\rho}=5.5{\times}10^{-3}{\Omega}cm$. The optical transmittance increases from 70% at 450 nm to 80% at 700 nm in visible spectrum. The surface roughness of the sample showed a change from 10 nm to 50 nm. The ITiO film used for TCO layer of DSCs exhibited an energy conversion efficiency of about 3.8 % at light intensity of 100 $mW/cm^2$.

  • PDF

Light-managing Techniques at Front and Rear Interfaces for High Performance Amorphous Silicon Thin Film Solar Cells (고성능 비정질실리콘 박막태양전지를 위한 전후면 계면에서의 빛의 효율적 관리 기술)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.354-356
    • /
    • 2017
  • We focused on light management technology in amorphous silicon solar cells to suppress increase in absorber thickness for improving power conversion efficiency (PCE). $MgF_2$ and $TiO_2$ anti-reflection layers were coated on both sides of Asahi VU ($glass/SnO_2:F$) substrates, which contributed to increase in PCE from 9.16% to 9.81% at absorber thickness of only 150 nm. Also, we applied very thin $MgF_2$ as a rear reflector at n-type nanocrystalline silicon oxide/Ag interface to boost photocurrent. By reinforcing rear reflection, we could find the PCE increase from 10.08% up to 10.34% based on thin absorber about 200 nm.

Evaluation of dispersion degree of nanoparticles in TiO2/epoxy resin nanocomposites

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.338-344
    • /
    • 2014
  • The purpose of this study was to evaluate the dispersion degree of particles using a nanoindentation test for titanium oxide nanoparticles/epoxy resin nanocomposites. Thus, the effects of the particle size and weight fraction, dispersion agent, and position of the sample on the modulus and degree of particle dispersion in the nanocomposites were investigated. As a result, the dispersion degree of large particles was found to be better than that of smaller particles in composites. It could be found that the aggregation or agglomeration of small particles with large surface energy occurred more easily in nanocomposites because of the large specific surface area. The moduli of the upper side of the film-shaped sample obtained from a nanoindentation test were low scattering, while the values for the bottom side were high scattering. Thus, the dispersion situation of the nanoparticles on the upper side of film-shaped samples could be considered to be better than that for the bottom side. This could be concluded due to the non-uniform nanoparticle dispersion in the same sample. The modulus obtained from nanoindentation test increased slightly with the content of nanoparticles and increased with the indented depth for the same sample. The latter is presumably due to the increase in the accumulated particles facing the indenter with the indented depth. The nanoindentation test was found to be a useful method to evaluate the dispersion status of nanoparticles in nanocomposites.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Improvement on Surface and Electrical Properties of Polymer Insulator Coated TiO2 Thin Film by Atomic Layer Deposition (원자층 증착장치에 의한 TiO2 박막 코팅된 폴리머 절연체의 표면 및 전기적 특성의 향상)

  • Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.440-444
    • /
    • 2016
  • Titanium oxide ($TiO_2$) thin films were synthesized on polymer insulator and Si substrates by atomic layer deposition (ALD) method. The surface and electrical properties of $TiO_2$ films synthesized at various ALD cycle numbers were investigated. The synthesized $TiO_2$ films exhibited higher contact angle and smooth surface. The contact angle of $TiO_2$ films was increased with the increase of ALD-cycle number. Also, the rms surface roughness of films was slightly rough with the increase of ALD-cycle number. The leakage current on $TiO_2$ film surface synthesized at various conditions were uniformed, and the values were decreased with the increase of ALD-cycle number. In the results, the performance of $TiO_2$ films for self-cleaning critically depended on a number of ALD-cycle.

Effects of Oxygen Surface Treatment on the Properties of TiO2 Thin Film for Self-cleaning Application (자기세정을 위한 스퍼터링 TiO2 박막의 산소 표면처리에 따른 특성)

  • Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.294-297
    • /
    • 2016
  • Titanium oxide ($TiO_2$) thin films were fabricated by unbalanced magnetron (UBM) sputtering. The fabricated $TiO_2$ films were treated by oxygen plasma under various RF powers. We investigated the characteristics of oxygen plasma treatment on the surface, structural, and physical properties of $TiO_2$ films prepared at various plasma treatment RF powers. UBM sputtered $TiO_2$ films exhibited higher contact angle value, smooth surface, and amorphous structure. However, the rms surface roughness $TiO_2$ films were rough, and the contact angle value was decreased with the increase of the plasma treatment RF power Also, the hardness value of $TiO_2$ film as physical properties was slightly increased with the increase of the plasma treatment RF power. In the results, the performance of $TiO_2$ films for self cleaning critically depended on the with the plasma treatment RF power.

Fabrication of transparent conductive oxides for Dye-sensitized solar cell application (염료 태양전지용 투명 전도설 박막제작 및 특성 고찰)

  • Hu, Jong-Hyun;Kim, Ji-Hoon;Sung, Youl-Moon;Park, Cha-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.205-210
    • /
    • 2008
  • Titanium-doped indium oxide (ITiO) films were prepared on soda-lime glass substrate using a magnetic null discharge (MND) sputter source. The ITiO thin films containing 10wt.% Ti showed the minimum resistivity of $\rho=5.5{\times}10^{-3}{\Omega}-cm$. The optical transmittance increases from 70% at 450 nm to 80% at 700 nm in visible spectrum. Photoelectron peaks for In 3d, Ti 2p, O 1s and C1s were detected for the ITiO film in the binding energy range of 0 to 1100 eV. The surface roughness of the sample showed a change from 10 nm to 50 nm. The ITiO film used for TCO layer of DSCs exhibited an energy conversion efficiency of about 3.8% at light intensity of 100 mW/$cm^2$.

  • PDF