Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.5.294

Effects of Oxygen Surface Treatment on the Properties of TiO2 Thin Film for Self-cleaning Application  

Kim, Nam-Hoon (Department of Electrical Engineering, Chosun University)
Park, Yong Seob (Department of Electronics, Chosun College of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.5, 2016 , pp. 294-297 More about this Journal
Abstract
Titanium oxide ($TiO_2$) thin films were fabricated by unbalanced magnetron (UBM) sputtering. The fabricated $TiO_2$ films were treated by oxygen plasma under various RF powers. We investigated the characteristics of oxygen plasma treatment on the surface, structural, and physical properties of $TiO_2$ films prepared at various plasma treatment RF powers. UBM sputtered $TiO_2$ films exhibited higher contact angle value, smooth surface, and amorphous structure. However, the rms surface roughness $TiO_2$ films were rough, and the contact angle value was decreased with the increase of the plasma treatment RF power Also, the hardness value of $TiO_2$ film as physical properties was slightly increased with the increase of the plasma treatment RF power. In the results, the performance of $TiO_2$ films for self cleaning critically depended on the with the plasma treatment RF power.
Keywords
$TiO_2$; Unbalanced magnetron sputtering; Contact angle; Rms surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. R. Hansen and K. Autumn, Proc. Natl. Acad. Sci. USA, 102, 385 (2005). [DOI: http://dx.doi.org/10.1073/pnas.0408304102]   DOI
2 M. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci., 11, 193 (2006). [DOI: http://dx.doi.org/10.1016/j.cocis.2006.06.002]   DOI
3 J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, J. Micromech. Microeng., 17, S147 (2007). [DOI: http://dx.doi.org/10.1088/0960-1317/17/7/S12]   DOI
4 J. C. Damasceno, S. S. Camargo Jr, F. L. Freire Jr, and R. Carius, Surf. Coat. Technol., 133-134, 247 (2000). [DOI: http://dx.doi.org/10.1016/S0257-8972(00)00932-4]   DOI
5 A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, a. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diam. Relat. Mater., 10, 1952 (2001). [DOI: http://dx.doi.org/10.1016/S0925-9635(01)00385-5]
6 D. Sheeja, B. K. Tay, S. P. Lau, and X. Shi, Wear, 249, 433 (2001). [DOI: http://dx.doi.org/10.1016/S0043-1648(01)00541-5]   DOI
7 A. A. Solov'ev, N. S. Sochugov, K. V. Oskomov, and S. V. Rabotkin, Plasma Physics Reports, 35, 399 (2009). [DOI: http://dx.doi.org/10.1134/S1063780X09050055]   DOI
8 N. Yasumaru, K. Miyazaki, and J. Kiuchi, Appl. Phys. A, 76, 983 (2003). [DOI: http://dx.doi.org/10.1007/s00339-002-1979-2]   DOI
9 M. Schlatter, Diam. Relat. Mater., 11, 1781 (2002). [DOI: http://dx.doi.org/10.1016/S0925-9635(02)00166-8]