• Title/Summary/Keyword: titanium oxide

Search Result 546, Processing Time 0.026 seconds

Effect of Titanium Surface Treatments Bond Strength and Cytotoxicity in Titanium-Porcelain System

  • Chung, In-Sung;Kim, Chi-Young;Choi, Sung-Min
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.105-113
    • /
    • 2008
  • The objective of this study was to evaluate the influence of surface modifications on the bonding characteristics and cytotoxicity of specific titanium porcelain bonded to milling titanium and cast titanium. Milling titanium and cast titanium samples were divided into 8 test groups. These groups are as follow: i) sandblasted with particles of different size of $220{\mu}m\;and\;50{\mu}m$, ii) different sequences of sandblasting treatment and etching treatment, iii) etched with different etching solutions, and iv) preheated or not. The surface characteristics of specimens were characterized by the test of mean roughness of surface and SEM. The bond strength of titanium-ceramic systems was measured by using three-point bending test and SEM. The results show that the mean roughness of surface of sample sandblasted with $220{\mu}m$ aluminum oxide increased and bond strength were higher than sample sandblasted with $50{\mu}m$ aluminum oxide. The mean roughness of surface decreased, but the bond strength increased when the samples sandblasted with $220{\mu}m$ aluminum oxide were preheated. The sample sandblasted with $220{\mu}m$ aluminum oxide after oxidized with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF) showed higher bond strength than sample oxidized with 30% $HNO_3$ after sandblasted with $220{\mu}m$ aluminum oxide. Group NaCuNF220SP (milling Ti: 35.3985 MPa, casting Ti: 37.2306 MPa) which was treated with occupational corrosive agent I (50% NaOH, 10% $CuSO_4{\cdot}5H_2O$) and II (35% $HNO_3$, 5% HF), followed by sandblasting with $220{\mu}m$ aluminum oxide and preheating at $750^{\circ}C$ for 1 hour showed the highest bond strength and significant differences (P<0.05). The method for modifying surface of titanium showed excellent stability of cells.

  • PDF

Color Evolution in Anodized Titanium (양극산화로 제작된 티타늄의 발색효과 연구)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.273-278
    • /
    • 2002
  • We oxidized pure titanium by anodizing oxidation process in the range of 590V, within 1.5A, 30seconds. we investigated color evolution with a spectrophotometer. Surface images and surface roughness were characterized by an optical microscope and an atomic force microscope, respectively. Below the thickness of 40 $\mu\textrm{m}$, metallic yellow, blue, and pink colorsn were obtained. Lightness decreased, increased, and decreased again as titanium oxide thickness increased. Blue color at the applied voltage of 30V showed the best lightness and reproducibility with surface roughness below l$\mu\textrm{m}$. Bare titanium and titanium oxide films had micro pits more than 10ea/$\mu\textrm{m}^2$. We report that we successfully made colors by varing thickness below 40$\mu\textrm{m}$ with anodizing oxidation of method.

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

Characterization of Titanium Implant Anodized in Various Electrolytes

  • Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Park, Joon-Bong;Hur, Yin-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.43-46
    • /
    • 2002
  • Commercial titanium rod was anodized in three types of electrolytes such as 0.06 mol/L $\beta-glycerophosphate+0.3mol/L$ calcium acetate, 0.06mol/L $\beta-glycerophosphate+0.3mol/L$ sodium acetate and 0.06 mol/L $\beta-glycerophosphate+5mol/L$ calcium phosphate. The titanium oxide layer $(TiO_2)$ was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and electron spectroscopy chemical analysis (ESCA). Numerous micropores were observed on the titanium oxide layer by SEM. The diameter of micropores increased with the increase of electrolytic voltage. The titanium oxide layer was composed of anatase structure. The phosphorous element was detected at 130 eV binding energy, but calcium was not found in the oxide layer because of lower contents. After anodizing the oxide layer was etched in the 30g/L NaOH solution at $80^{\circ}C$ for 1hr. The surroundings of micropores were much more smoothed and rounded than before alkaline etching.

Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect (그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties (우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조)

  • Yu, Dongsu;Hwang, Kwang-Taek;Kim, Jong-Young;Jung, Jong-Yeol;Baik, Seung-Woo;Shim, Wooyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.263-270
    • /
    • 2018
  • Recently, porous ceramic materials with anti-static performance are urgently needed for semiconductor and OLED/LCD display manufacturing industry. In this work, we fabricated porous titanium manganese oxide ceramics having the surface resistivity of $10^8-10^{10}$ ohm and enhanced mechanical strength by partial sintering method using nanosized titanium oxide. By addition of nano-sized titanium oxide in the matrix, neck formation between grains was strengthened, which remarkably increased flexural strength up to 170 MPa (@porosity: 15 %), 110 MPa (@porosity: 31 %), compared to 80 MPa (@porosity: 26 %) for pristine titanium manganese oxide ceramics. We evaluated the performances of our ceramics as air-floating module for OLED flexible display manufacturing devices.

Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

  • Lee, In-Hae;Jo, Yun-Kyoung;Kim, Yong-Tae;Tak, Yong-Sug;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1465-1469
    • /
    • 2012
  • For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

Studieson Titanium Enamel Frit (티타늄琺瑯후릿트에 關한 硏究)

  • Lee, Chong-Keun;Han, Ki-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 1957
  • There are two problems to be solved by our efforts in the enamel frit. One is how we can cover the enamel frit thin with complete milk white as possible, and the other is how it can be, made resistant for chemicals than before one. The frit which can solved the two problems just mentioned above is titanium enamel frit. This frit has been developed in America after War Ⅱ, and now the research for concerning antimony frit into titanium frit is under development entirely. In order to develope the enamel industry in Korea, it is urgent problem to convert antimony frit into titanium frit. By the way the titanium frit is emulsified titanium oxide crystal which made through reheating the supersaturated solution of titanium oxide in the basis of glass. Unfortunately, there are many obscure points in active fact or which influence on its composition and characteristics yet. However, this task was tried for the first in Korea. As first step, the test was carried on the reference books, and we can be possible convert antimony frit into titanium frit as a result of this experiment. As a conclusion, for the purpose of developing the enamel industry in Korea, we studied that the research for converting antimony enamel frit which has been used popularly into titanium enamel frit which is more economic and resistant for chemicals. As a result of experiments, the following points concerning with titanium frit have become clearly. 1. It is better when the composition of titanium enamel frit has as following table.Man Duck San Silica 24 An Yang Feldspar 20 Borax 28 Sodium Nitrate 4 Cryolite 7 Calcium Carbonate 3.6∼1 Titanium Oxide 10 Calcium phosphate 0 ∼3.2 Calcium Fluoride 0∼1.8 Antimony Oxide 0∼0.5 2. The amount of $TiO_2$, to be added is $10%\;to\;12{%,\;CaF_2\;is\;under\;1.8%,\;P_2O_5\;is\;under\;1.6%,\;Sb_2O_3\;is\;under\;0.5%$. 3. In the titanium frit, the limit of iron oxide amount to be included is under 0. 5%. 4. Comparing the titanium enamel frit with antimony enamel frit not only the titanium frit can be savely 20.6% in the price of raw materials, but one time of glazing and heating process is omitted in each case, and it is known the titanium frit is more resistant for chemicals than antimony frit.

  • PDF

The Effects of Anodizing Process Parameters and Oxidation Temperature under Atmospheric Environment on Morphology of the Pure Titanium by Alternating Current Arc-anodizing (순티타늄의 교류 불꽃 양극산화층 미세조직에 미치는 양극산화공정변수 및 대기산화온도의 영향)

  • Yang, Hack-Hui;Park, Chong-Sung
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • Anodizing to form oxide layers on the pure titanium was performed in the electrolyte containing 1.5M $H_2SO_4$, 0.2M $H_3PO_4$, and 2.5wt.% $CuSO_4$ using the ac-biased arc anodizing technique. Titanium oxide layers anodized with different applied voltages, voltage-elevating rates, and anodizing times were investigated. In addition, thermal oxidation test under an atmospheric environment for the arc-anodized specimens was carried out. The thickness of oxide layers were not affected by the voltage-elevating rates, but increased slightly with the increase of anodizing times. The thickness of oxide layers were increased with the increase of voltages, and increased remarkably in the condition of 200V. The size and number of the pore observed in the center of the porous cell were decreased with increase of applied voltage. From the result of thermal oxidation test, it revealed that oxide layer formed by arc anodizing more effective to prevent oxidation of pure titanium.