Browse > Article
http://dx.doi.org/10.5695/JKISE.2008.41.1.016

The Effects of Anodizing Process Parameters and Oxidation Temperature under Atmospheric Environment on Morphology of the Pure Titanium by Alternating Current Arc-anodizing  

Yang, Hack-Hui (Department of Metallurgical & Materials Engineering, Inha Technical College)
Park, Chong-Sung (Department of Metallurgical & Materials Engineering, Inha Technical College)
Publication Information
Journal of the Korean institute of surface engineering / v.41, no.1, 2008 , pp. 16-22 More about this Journal
Abstract
Anodizing to form oxide layers on the pure titanium was performed in the electrolyte containing 1.5M $H_2SO_4$, 0.2M $H_3PO_4$, and 2.5wt.% $CuSO_4$ using the ac-biased arc anodizing technique. Titanium oxide layers anodized with different applied voltages, voltage-elevating rates, and anodizing times were investigated. In addition, thermal oxidation test under an atmospheric environment for the arc-anodized specimens was carried out. The thickness of oxide layers were not affected by the voltage-elevating rates, but increased slightly with the increase of anodizing times. The thickness of oxide layers were increased with the increase of voltages, and increased remarkably in the condition of 200V. The size and number of the pore observed in the center of the porous cell were decreased with increase of applied voltage. From the result of thermal oxidation test, it revealed that oxide layer formed by arc anodizing more effective to prevent oxidation of pure titanium.
Keywords
Titanium; Arc anodizing; Alternating current; Thermal oxidation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surf. Coat. Technol., 122 (1999) 73   DOI   ScienceOn
2 H.-J. Song et al., Surf. Coat. Technol., 201 (2007) 8738   DOI   ScienceOn
3 W. Krysmann, P. Kurze, K. H. Dittrich, H. G. Schneider, Cryst. Res. Technol., 19 (1984) 973   DOI
4 K. H. Dittrich, W. Krysmann, P. Kurze, H. G. Schneider, Cryst. Res. Technol., 19 (1984) 93   DOI
5 G. P. Wirtz, S. D. Brown, W. M. Krive, Mater. Manuf. Process, 6 (1991) 87   DOI
6 V. Kadary, N. Klein, J. Electrochem. Soc., 127 (1980) 139   DOI   ScienceOn
7 S. K. Poznyak et al., J. Electroanal. Chem., 579 (2005) 299   DOI   ScienceOn
8 Y.-J. Park et al., Appl. Surf. Sci., 253 (2007) 6013   DOI   ScienceOn
9 N. K. Kuromoto et al., Mater. Char., 58 (2007) 114   DOI   ScienceOn
10 C. K. Dyer, J. S. Leach, J. Electrochem. Soc., 125 (1978) 1032   DOI   ScienceOn
11 H. S. Kim et al., Kor. J. Mater. Res., 17, 1 (2007) 6   과학기술학회마을   DOI   ScienceOn
12 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. J. Dowey, Surf. Coat. Tech., 122 (1999) 73
13 C. W. Yoo, H. J. Oh, J. H. Lee, J. J. Chang, C. S. Chi, J. Kor. Inst. Surf. Eng., 35, 6(2002) 383
14 H. Habazaki et al., Surf. Coat. Technol., 201 (2007) 8730   DOI   ScienceOn
15 H. Habazaki et al., Electrochem. Com. 9 (2007) 1222   DOI   ScienceOn
16 P. Kurze, W. Krysmann, H. G. Schneider, Cryst. Res. Technol., 21, 1603 (1986)