Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.5.1465

Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide  

Lee, In-Hae (Department of Chemical Engineering, Inha University)
Jo, Yun-Kyoung (Department of Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemical Engineering, Inha University)
Tak, Yong-Sug (Department of Chemical Engineering, Inha University)
Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
Publication Information
Abstract
For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.
Keywords
Titanium oxide; Aluminum oxide; Anodization; Barrier oxide;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Zhao, X.; Seo, S.-K.; Lee, U.-J.; Lee, K.-H. J. Electrochem. Soc. 2007, 154, C553.   DOI   ScienceOn
2 Santos, A.; Vojkuvka, L.; Pallares, J.; Ferre-Borrull, J.; Marsal, L. F. J. Electroanal. Chem. 2009, 632, 139.   DOI   ScienceOn
3 Kant, K.; Losic, D. Phys. Status Solidi RRL 2009, 3, 139.   DOI   ScienceOn
4 Yuan, J. H.; Chen, W.; Hui, R. J.; Hu, Y. L.; Xia, X. H. Electrochim. Acta 2006, 51, 4589.   DOI   ScienceOn
5 Chen, W.; Wu, J.-S.; Yuan, J.-H.; Xia, X.-H.; Lin, X.-H. J. Electroanal. Chem. 2007, 600, 257.   DOI   ScienceOn
6 Choi, J.; Wehrspohn, R. B.; Lee, J.; Gösele, U. Electrochim. Acta 2004, 49, 2645.   DOI   ScienceOn
7 Zhu, X.-F.; Song, Y.; Liu, L.; Wang, C.-Y.; Zheng, J.; Jia, H.-B.; Wang, X.-L. Nanotechnology 2009, 20, 475303.   DOI   ScienceOn
8 Masuda, H.; Fukuda, K. Science 1995, 268, 1466.   DOI   ScienceOn
9 Lim, J. H.; Hong, S.-Y.; Kang, S. J.; Doh, H.-J.; Song, J.; Choi, J. R.; Chung, K.-H.; Choi, J. Electrochem. Commun. 2009, 11, 2141.   DOI   ScienceOn
10 Albella, J. M.; Montero, I.; Martinez-Duart, J. M. Electrochim. Acta 1987, 32, 255.   DOI   ScienceOn
11 Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W. A. Appl. Surf. Sci. 2007, 253, 4680.   DOI   ScienceOn
12 Suh, J. S.; Lee, J. S. Appl. Phys. Lett. 1999, 75, 2047.   DOI   ScienceOn
13 Shingubara, S.; Nanopart, J. Res. 2003, 5, 17.
14 Wang, X.; Han, G.-R. Microelec. Eng. 2003, 66, 166.   DOI
15 Thompson, G. E.; Furneaux, R. C.; Wood, G. C.; Richardson, J. A.; Goode, J. S. Nature 1978, 272, 433.   DOI   ScienceOn
16 Jessensky, O.; Müller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173.   DOI   ScienceOn
17 Li, A. P.; Muller, F.; Bimer, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023.   DOI   ScienceOn
18 Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.   DOI   ScienceOn
19 Mohamed, A. E.; Rohani, S. Energy Environ. Sci. 2011, 4, 1065.   DOI   ScienceOn
20 Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Phys. Chem. B 2005, 109, 15754.   DOI   ScienceOn
21 Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179.   DOI   ScienceOn
22 Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Nano Letters 2005, 5, 697.   DOI   ScienceOn
23 Jo, T.; Jung, I.; Lee, I.; Choi, J.; Tak, Y. Electrochem. Commun. 2010, 12, 616.   DOI   ScienceOn
24 Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. Nature 1989, 337, 147.   DOI