• Title/Summary/Keyword: titanium ion

Search Result 191, Processing Time 0.024 seconds

Effects of Partial Substitution of W for Ti in Titanium Dioxide

  • Lee, Eun-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2011
  • [ $Ti_{1-x}W_xO_{2-y}$ ]solid solutions with compositions of x = 0.01(TW-1), x = 0.02(TW-2), x = 0.03(TW-3) and x = 0.04(TW-4) were prepared at 1,073 K in air under atmospheric pressure. All the solutions exhibited tetragonal symmetries. Nonstoichiometric chemical formulas have been obtained from oxidation-reduction titration and the partial substitution of $W^{6+}$ ions mainly caused the formation of $Ti^{3+}$ ion, rather than oxygen excess. Resistivities of the samples were highly dependent on humidity. The increase of the W amount resulted in an increase of $Ti^{3+}$ content, decrease of resistivity values and finally degradation of photocatalytic activities.

Photoelectrochemical Degradation of Perchlorate Ions by TiO2 (산화티탄의 광전기화학 특성을 이용한 퍼클로레이트 이온 제거)

  • Min, Hyung-Seob;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.432-437
    • /
    • 2008
  • Titanium oxide films and powders are attached onto carbon cloths via RF reactive sputtering and an epoxy resin mixture, respectively. $TiO_2$/carbon composite materials were used to investigate the photoelectrochemical degradation of perchlorate ions in water. The energy band gaps of the RF-sputtered $TiO_2$ thin films ranged from 3.35-3.44 eV. A photocurrent of the powdered $TiO_2$ as illuminated by ultra-violet light for 30 min. was $2.79\;mA/cm^2$. Perchlorate ions in water were shown to be degradable by a UV-illuminated $TiO_2$ powder/carbon/Nafion/carbon composite.

A Study on the Formation of Interface and the Thin Film Microstructure in TiN Deposited by Ion Plating (이온플레팅에 의한 TiN 증착중 계면형성과 박막 미소조직에 관한 연구)

  • 여종석;이종민;한봉희
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.73-79
    • /
    • 1991
  • Recent studies son surface coatings have shown that the change of physical, chemical and crystallographic structure analysed and observed according to the deposition process variables has the effects on the resultant film properties. Under the same preparation condition conditions of the substrate and process variables, physical morphology variations characterized by substrate temperature and bias which offect the surface mobility of adatom and adhesion variations related to the formation of Ti interlayer were considered in the present study. Microhardness showed the highest value around 40$0^{\circ}C$ of the substrate temperature and increased with the substrate bias. Adhesion was improved with the increase of substrate temperature and bias. An interlayer of pure titanium formed prior to deposition of TiN improves the adhesion at its optimum thickness. These results were explained by the change of physical morphology and phase analysis.

  • PDF

Recovery of Pure Electrolytic Iron from Wasted Hydrochloric Pickling Solution of Steel (철강의 염산산세 폐액으로부터 전해철의 제조에 관한 연구)

  • 김기호;권오익;홍성규
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • Iron component in wasted hydrochloric etching solutions from steel works were recovered by electrolysis. The electric conductances of the solutions, as the function of the bath temperature and the ferrousion concen-tration, were measured and the result of the original solution was K=(0.0012+0.0005$\times$10-3T-0.1160$\times$10-6T2)$\times$102S.m-1(T in $^{\circ}C$) The current efficiency was better for the bath using a soluble steel plate anode than for the bath using an insoluble platinized titanium one. Densed electrolytic iron having the purity of higher than 99.99% was ob-tained at the electrolysis conditions of the cathodic current density of 15A/dm2, the bath temperature of $70\pm$$5^{\circ}C$ and the ferrous ion concentration of about 100g/l. The morphologies of the deposited iron were observed by SEM.

  • PDF

Field emission from diamond-like carbon films studied by scanning anode

  • Ahn, S.H.;Jeon, D.;Lee, K.-R.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.54-58
    • /
    • 1999
  • We deposited diamond-like carbon (DLC) films using ion beam sputtering of a graphite target on flat substrates for use as a thin film field emitter. An n-type silicon wafer, titanium-coated silicon, and indium tin oxide (ITO) coated glass were used as a substrate. All films exhibited a sudden increase in the emission after a breakdown occurred at high voltage. The morphology of the films after the breakdown depended on the substrate. On ITO and Ti substrates, the DLC film peeled off upon breakdown, but on the Si substrate the surface melting due to breakdown resulted in the formation of various structures such as a sharp point, mound, and crater. By scanning the deformed surface with a tip anode, we found that the emission was concentrated at the deformed sites, indicating that the field enhancement due to the morphology change was responsible for the increased emission.

  • PDF

Column Chromatographic Separation of Titanium, Zirconium and Niobium (Ti, Zr 및 Nb의 원통크로마토그라프 분리)

  • Chul Lee;Yung Chang Yim;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.15-19
    • /
    • 1973
  • A method was developed for the separation of titanium, niobium and zirconium together in a group from the coexisting ions of various metals such as iron, cobalt, nickel, yttrium and rare earths by means of the cation exchange column using ${\alpha}$-hydroxyisobutyric acid as the eluent. In the course of the present investigation, it was found that the tailing phenomena of zirconium were attributable to the hydroxide precipitation which was made prior to the elution. For example, if zirconium was precipitated by sodium hydroxide, the tailing of zirconium became very serious in contrast to the results reported by others. This paper describes how these tailing phenomena of zirconium were prevented and how a practical procedure for the separation of these ions was, achieved using ion-exchange method. Using the present method the nuclides of $^{90m}Y$ and $^{90}Y$ were separated with radiochemical purity from the irradiated zirconium.

  • PDF

Titania Nanotube-based Dye-sensitized Solar Cells (티타니아 나노튜브를 이용한 염료감응 태양전지)

  • Kim, Taehyun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • Titanium nanotubes (TNT) of various lengths ranging from $0.34^{\circ}C$ to a maximum of $8.9^{\circ}C$ were prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion ($F^-$) of HF, NaF and $NH_4F$. When TNT prepared by anodizing was calcined at $450^{\circ}C$, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was $2.5{\mu}m$. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density ($J_{sc}$) of the TNT-DSSC was $9.74mA/cm^2$, which was about 35% higher than the $7.19mA/cm^2$ of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.

Tribological Characteristics of TiC, TiN and TiC/TiN Coatings (TiC, TiN과 TiC/TiN 코팅의 트라이볼로지 특성)

  • Jeon, Chan Yeal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1253-1258
    • /
    • 2014
  • The tribological properties of TiC, TiN and TiC/TiN coatings on steels prepared by the cathodic-arc (CA) ion plating technique were investigated. Experiments were carried out on a tribo-test machine using a Falex journal V block system. The friction and wear characteristics of the coatings were determined by varying the applied load and sliding speed. The TiC, TiN and TiC/TiN coatings markedly increased the tribological characteristics of the surface. As far as a single layer coating was concerned, TiN goes better results than TiC. However, the TiC/TiN multilayer coating performed better than either single layer coating. The major factor in the improved performance of the multilayer coating was the role of TiC in improving the adhesion between the external TiN layer and the substrate steel.

DETORQUE FORCE OF TiN-COATED ABUTMENT SCREW WITH VARIOUS COATING THICKNESS AFTER REPEATED CLOSING AND OPENING

  • Kim, Han-Su;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.769-779
    • /
    • 2007
  • Statement of problem. When TiN coating is applied to the abutment screw, occurrence of greater preload and prevention of the screw loosening could be expected due to decrease of frictional resistance. However, the proper thickness of TiN coating on abutment screw has not been yet reported. Purpose. The purpose of this study is to find out the appropriate TiN coating thickness by evaluating the detorque force and the surface change of titanium abutment screw with various TiN coating thickness. Material and methods. 1. Material Thirty five non-coated abutment screws were prepared for TiN coating. TiN coatings were prepared by Arc ion plating method. Depending on the coating deposition time(CDT), experimental groups were divided into 6 groups(CDT 30min, 60min, 90min, 120min, 150min, 180min) and those of 1 group was not coated as a control group. Each group was made up of 5 abutment screws. 2. Methods FE-SEM(Field Emission Scanning Electron Microscoper) and EDX(Energy Dispersive X-ray Spectroscopy) were used to observe the surface of the abutment screw. Electric scales was used to measure the weight of the abutment screw after the repeated closing and opening of 10 trials. Detorque force was measured with digital torque gauge, at each trial. Results. 1. As the coating deposition time increased, the surface became more consistent and smooth. 2. As for the abutment screws that were TiN coated for more than 60 minutes, no surface change was found after the repeated closing and opening. 3. The TiN coated abutment screws showed less weight change than the non-coated abutment screws. 4. The TiN coated abutment screws showed higher mean detorque force than the noncoated abutment screws. 5. The abutment screw coated for 60 minutes showed the highest mean detorque force. Conclusion. The coating layer of proper thickness is demanded to obtain consistent and smooth coating surface, resistance to wear, and increased detorque force of the abutment screw. In conclusion, the coating deposition time of 60 minutes indicated improved mechanical property, when TiN coating was conducted on titanium abutment screw.

Effect of Ti substitution on electrochemical properties $Li_{0.44}MnO_2$ synthesized by solid state reaction (고상반응법에 의해 제조된 $Li_{0.44}MnO_2$의 전기화학적 성질에 미치는 Ti 치환의 영향)

  • ;Marca M. Doeff;Abraham Anapolsky;Thomas J. Richardson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.362-366
    • /
    • 2000
  • $Li_{0.44}MnO_2$cathode material has high reversibility during lithium insertion processes and is not easily damaged through over-charging or over-discharging. $Mn_2O_3$is often present as an impurity phase, and reduce the electrochemical capacity of electrode because this phase is electrochemically inert. Adding of excess NaOH reduced the $Mn_2O_3$to the content under undetectable by X-ray diffraction. Because the capacity can be increased in the cathode materials with larger unit cell, some of the manganese was replaced with titanium having larger ion size, and powders with the formula $Li_{0.44}T_{iy}Mn_{1-y}O_2$(where y = 0.11, 0.22, 0.33, 0.44, and 0.55) was synthesized and characterized. A maximum reversible capacity of 150 mAh/g was obtained for $Li/P(EO)_8$LiTFSI/$Li_{0.44}Ti_{0.22}Mn_{0.78}O_2$cells in electrochemical potential spectroscopy (ECPS) experiments. Cells with the titanium-doped manganese oxides exhibited a fade rate of 0.12 % or less per cycle.

  • PDF