Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.2.68

Effects of Partial Substitution of W for Ti in Titanium Dioxide  

Lee, Eun-Seok (Department of Chemistry, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.2, 2011 , pp. 68-71 More about this Journal
Abstract
[ $Ti_{1-x}W_xO_{2-y}$ ]solid solutions with compositions of x = 0.01(TW-1), x = 0.02(TW-2), x = 0.03(TW-3) and x = 0.04(TW-4) were prepared at 1,073 K in air under atmospheric pressure. All the solutions exhibited tetragonal symmetries. Nonstoichiometric chemical formulas have been obtained from oxidation-reduction titration and the partial substitution of $W^{6+}$ ions mainly caused the formation of $Ti^{3+}$ ion, rather than oxygen excess. Resistivities of the samples were highly dependent on humidity. The increase of the W amount resulted in an increase of $Ti^{3+}$ content, decrease of resistivity values and finally degradation of photocatalytic activities.
Keywords
Resistivity; Photocatalytic activity; Solid solutions; Nonstoichiometry; Oxidation-reduction titration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, Ann. Rev. Mater. Res. 35, 1 (2005) [DOI: DOI:10.1146/annurev.matsci.35.100303.121340].   DOI   ScienceOn
2 S. Klosek and D. Raftery, J. Phys. Chem. B 105, 2815 (2001) [DOI: 10.1021/jp004295e].   DOI   ScienceOn
3 J. C. S. Wu and C. H. Chen, J. Photochem. Photobiol. A: Chem. 163, 509 (2004) [DOI: 10.1016/j.jphotochem.2004.02.007].   DOI   ScienceOn
4 S. K. Joung, T. Amemiya, M. Murabayashi, and K. Itoh, Chem. Eur. J. 12, 5526 (2006) [DOI: 10.1002/chem.200501020].   DOI   ScienceOn
5 T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, Appl. Phys. Lett. 81, 454 (2002) [DOI: 10.1063/1.1493647].   DOI   ScienceOn
6 T. Ohno, T. Mitsui, and M. Matsumura, Chem. Lett. 32, 364 (2003) [DOI: 10.1246/cl.2003.364].   DOI   ScienceOn
7 C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, and W. F. Maier, Appl. Catal. B: Environ. 32, 215 (2001) [DOI: 10.1016/s0926-3373(01)00141-2].   DOI   ScienceOn
8 C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, Nano Lett. 3, 1049 (2003) [DOI: 10.1021/nl034332o].   DOI   ScienceOn
9 C. Ariyo, P. Gonzalez, and L. Holappa, VII International Conference on Molten Slags, Fluxes & Salt (The South African Institute of Mining and Metallurgy, Johannesburg, Republic of South Africa, 2004) p. 125.
10 E. S. Lee, Bull. Korean Chem. Soc. 25, 859 (2004).   DOI   ScienceOn
11 E. S. Lee, J. Korean Ind. Eng. Chem. 13, 224 (2002).
12 E. S. Lee, J. Ind. Eng. Chem. 2, 151 (1996).
13 L. B. Valdes, Proc. IRE 42, 420 (1954).   DOI   ScienceOn
14 E. S. Lee, J. Ind. Eng. Chem. 14, 701 (2008) [DOI: 10.1016/j.jiec.2008.02.011].   DOI   ScienceOn
15 A. V. Murugan, V. Samuel, and V. Ravi, Mater. Lett. 60, 479 (2006) [DOI: 10.1016/j.matlet.2005.09.017].   DOI   ScienceOn
16 A. R. Gandhe and J. B. Fernandes, J. Solid State Chem. 178, 2953 (2005) [DOI: 10.1016/j.jssc.2005.06.034].   DOI   ScienceOn
17 H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, and Yan, Chem. Mater. 16, 846 (2004) [DOI: 10.1021/cm035090w].   DOI   ScienceOn
18 A. R. Gandhe and J. B. Fernandes, Bull. Catal. Soc. India 4, 131 (2005).
19 A. R. Gandhe, S. P. Naik, S. B. Kakodkar, and J. B. Fernandes, Catal. Commun. 7, 285 (2006) [DOI: 10.1016/j.catcom.2005.09.013].   DOI   ScienceOn
20 Z. S. Wang, C. H. Huang, F. Y. Li, S. F. Weng, and S. M. Yang, J. Photochem. Photobiol. A: Chem. 140, 255 (2001) [DOI: 10.1016/s1010-6030(01)00411-7].   DOI   ScienceOn