• Title/Summary/Keyword: titanium aluminide

Search Result 17, Processing Time 0.027 seconds

A Study on the Characteristics of Amorphous TiAl by P/M Processing

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.51-55
    • /
    • 2016
  • The P/M processing of titanium aluminide using amorphous TiAl is developed by which it is possible to overcome inherent fabricability problems and to obtain a fine microstructure. A high quality amorphous TiAl powder produced by reaction ball milling shows clear glass transition far below a temperature at the onset of crystallization in differential scanning calorimetry above a heating rate of 0.05 K/s. We obtained a fully dense compact of amorphous TiAl powders, encapsulated in a vacuumed can, via viscous flow by hot isostatic pressing (HIP). Isothermally annealing of HIP'ed amorphous compact under a pressure of 196 MPa shows a progressive growth of ${\gamma}-TiAl$ phase with ${\alpha}2$ ($Ti_3Al$), which is characterized by increasing sharpness of X-ray peaks with temperature. Fully dense HIP'ed compact of titanium aluminide TiAl shows a high hardness of 505 Hv, suggesting strengthening mechanisms by sub-micron sized grain of ${\gamma}-TiAl$ and particle-dispersion by second phase constituent, ${\alpha}2$.

The Effect of using Gamma Titanium RF Electrodes on the Ablation Volume during the Radiofrequency Ablation Process

  • Mohammed S. Ahmed;Mohamed Tarek El-Wakad;Mohammed A. Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Radiofrequency ablation (RFA) is an alternative treatment for liver cancer to the surgical intervention preferred by surgeons. However, the main challenge remains the use of RF for the ablation of large tumours (i.e., tumours with a diameter of >3 cm). For large tumours, RFA takes a large duration in the ablation process compared with surgery, which increases patient pain. Therefore, RFA for large tumours is not preferred by surgeons. The currently materials used in RF electrodes, such as the nickeltitanium alloy (nitinol), are characterized by low thermal and electrical conductivities. On the other hand, the use of materials that have high thermal and electrical conductivities, such as titanium aluminide alloy (gamma titanium), produces more thermal energy for tumours. In this paper, we developed a cool-tip RF electrode model that uses nickel-titanium alloy and replaced it with titanium aluminide alloy by using the finite element model (FEM). The aim of this paper is to study the effect of the thermal and electrical conductivities of gamma titanium on the ablation volume. Results showed that the proposed design of the electrode increased the ablation rate by 1 cm3 /minute and 6.3 cm3/10 minutes, with a decrease in the required time ablation. Finally, the proposed model reduces the ablation time and damages healthy tissue while increasing the ablation volume from 22.5% cm3 to 62.5% cm3 in ten minutes compared to recent studies.

Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.398-402
    • /
    • 2015
  • Fundamental studies of microstructural changes and high temperature deformation of titanium aluminide (TiAl) were conducted from the view point of the effect of Al content in order to develop the manufacturing process of TiAl. Microstructures in an as cast state consisted mainly of lamellar structure irrespective of Al content. By homogenization at 1473 K, the microstructures of Ti-49Al and Ti-51Al were transformed into an equiaxial structure which was composed of ${\gamma}$-TiAl, while the lamellar structure that was observed in Ti-46Al and Ti-47Al was much more stable. We found that the reduction of Al content suppressed the formation of equiaxial grains and resulted in a microstructure of only a lamellar structure. On Ti-49Al and Ti-51Al, dynamic recrystallization occurred during high temperature deformation, and the microstructure was transformed into a fine equiaxial one, while the microstructures of Ti-46Al and Ti-47Al contained few recrystallized grains and consisted mainly of a deformed lamellar structure. We observed that on the low-Al alloys the lamellar structure under hard mode deformation conditions deformed as kink observed B2-NiAl. High temperature deformation characteristics of TiAl were strongly affected by Al content. An increase of Al content resulted in a decrease of peak stress and activation energy for plastic deformation and an increase of the recrystallization ratio in TiAl.

Microstructure and Hardness of Titanium Aluminide/Carbide Composite Coatings Prepared by Reactive Spray Method (반응성 스프레이방법으로 제작한 티타늄 알루미나이드/탄화물 복합박막의 미세조직과 경도)

  • Han, Chang-Suk;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.350-358
    • /
    • 2020
  • A variety of composite powders having different aluminum and carbon contents are prepared using various organic solvents having different amounts of carbon atoms in unit volume as ball milling agents for titanium and aluminum ball milling. The effects of substrate temperature and post-heat treatment on the texture and hardness of the coating are investigated by spraying with this reduced pressure plasma spray. The aluminum part of the composite powder evaporates during spraying, so that the film aluminum content is 30.9 mass%~37.4 mass% and the carbon content is 0.64 mass%~1.69 mass%. The main constituent phase of the coating formed on the water-cooled substrate is a non-planar α2 phase, obtained by supersaturated carbon regardless of the alloy composition. When these films are heat-treated at 1123 K, the main constituent phase becomes γ phase, and fine Ti2AlC precipitates to increase the film hardness. However, when heat treatment is performed at a higher temperature, the hardness is lowered. The main constitutional phase of the coating formed on the preheated substrate is an equilibrium gamma phase, and fine Ti2AlC precipitates. The hardness of this coating is much higher than the hardness of the coating in the sprayed state formed on the water-cooled substrate. When hot pressing is applied to the coating, the porosity decreases but hardness also decreases because Ti2AlC grows. The amount of Ti2AlC in the hot-pressed film is 4.9 vol% to 15.3 vol%, depending on the carbon content of the film.

A Study of Weld Cracking Susceptibility of Gamma Titanium Aluminides (Gamma Titanium Aluminide의 용접균열 감수성에 관한 연구)

  • ;W.A. Baeslack III;T.J. Kelly
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.208-211
    • /
    • 1995
  • Five cast gamma titanium aluminides, Ti-45~48%Al-2%Nb-2%Cr (nominal composition in at. %), were laser welded and their weld cracking susceptibilities were evaluated. Laser power, traversing rate and preheat temperature were systematically varied to generate a series of welds exhibiting a wide range of cooling rate ($100^{\circ}C/s-10,000^{\circ}C/s$). As Al content increased and the weld cooling rate decreased, solidification cracking susceptibility increased while solid-state cracking susceptibility decreased. Through laser beam energy input control and preheat, it was determined possible to produce high quality laser welds.

  • PDF

Effect of Heating Rate on Self-Propagating, High-Temperature Synthesis of $TiAl_3$ Intermetallic from Multi-Layered Elemental Foils (다층원소박판에서 $TiAl_3$의 고온자전합성에 미치는 승온속도의 영향)

  • Kim, Yeon-Uk;Kim, Byeong-Gwan;Nam, Tae-Un;Heo, Bo-Yeong;Kim, Yeong-Jik
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.987-992
    • /
    • 1998
  • Titanium aluminide intermetallic compound was formed from high purity elemental Ti and A1 foils by selfpropagating, high-temperature synthesis(SHS1 in hot press. Formation of $TiAl_3$ intermetallics at the interface between Ti and Al foil was observed to be controlled by temperature, pressure and heating rate. Especially, the heating rate is the most important role to form intermetallic compound by SHS reaction. According to DTA experiment, the SHS reactions appeared at two different temperatures below and above the melting point of Al. It was also observed that both SHS reaction temperatures increased with increasing the heating rate. After the SHS reaction of alternatively layered 10 Ti and 9 A1 foils at the heating rate of $20^{\circ}C$/min, the $700\mu\textrm{m}$ thick titanium aluminide sheet was formed by heat treatment at $810^{\circ}C$ for 4hours.

  • PDF

Dynamic Oxidation Behaviors of Aluminide Coated Titanium Alloys (알루미나이드 코팅된 티타늄 합금의 동적산화거동)

  • Son, Youngil;Park, Jinsoo;Park, Joonsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2015
  • Titanium alloys has been received an attention due to their excellent specific strength and many other superior properties in the application of components of flying subjects. In this study, Ti-6Al-4V (Ti64 alloy) has been selected in order to evaluate oxidation and degradation behaviors under the exposure of high temperature flame. The alloy has been coated with Al diffusion coating routes. The coated alloys showed an improved oxidation and degradation behaviors. The oxidation and degradation mechanism for the coated and uncoated alloys has been discussed in terms of microstructural observations.