• Title/Summary/Keyword: titanium (Ti)

Search Result 1,963, Processing Time 0.039 seconds

A Study on the Fabrication of Dye-Sensitized Solar Cells Consisting of Ti Electrodes by Electron-beam Evaporation Method (전자빔 증착법에 의한 티타늄 전극 구조 염료 태양전지 제작에 관한 연구)

  • Kim, Yun-Gi;Shim, Choung-Hwan;Kim, Hyun-Gyu;Sung, Youl-Moon;Kim, Dong-Hyun;Lee, Hae-June;Park, Chung-Hoo;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.754-758
    • /
    • 2010
  • In general, Dye-sensitized Solar Cells(DSCs) consist of the nanocrystalline titanium dioxide($TiO_2$) layer which is fabricated on a transparent conductive oxide(TCO) layer such as $F/SnO_2$ glass, a dye adhered to the $TiO_2$, an electrolyte solution and platinum-coated TCO. Among these components, two TCO substrates are estimated to be about 60% of the total cost of the DSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, TCO-less DSCs consisting of titanium electrodes were investigated. The titanium electrode is deposited on top of the porous $TiO_2$ layer using electron-beam evaporation process. The porosity of the titanium electrode was found out by the SEM analysis and dye adhesion. As a result, when the thickness of the titanium electrode increased, the surface resistance decreased and the conversion efficiency increased relatively.

Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering) (고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결)

  • 김지헌;최상욱;조원승;조동수;오장환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Production of Titanium Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 Ti 분말 제조)

  • Park Il;Chu Yong Ho;Lee Chul Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.

Ruthenium을 도입한 Titanium Dioxide의 합성과 산화반응 연구

  • Kim, Yeong-Yong;Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.199.2-199.2
    • /
    • 2014
  • Titanium과 Ruthenium의 비율(Ru/Ti = 0.01, 0.03, 0.05, 0.07)을 조절하여 Ruthenium이 도입된 산화타이타늄($TiO_2$)를 수열합성법을 이용하여 합성하였다. TEM 이미지를 통하여 네모난 형태의 나노입자를 확인하였으며 XRD 패턴과 ICP 원소 분석을 통하여 Anatase 형태와 각각 다른 양의 Ruthenium이 도입된 것을 확인하였다. 본 연구에서는 Ruthenium이 도입된 산화타이타늄을 이종상촉매로 사용하여 Benzyl alcohol 및 Benzyl amine의 산화반응에 적용하였으며 특히, Ru/Ti = 0.03인 촉매가 가장 우수한 활성을 보였다.

  • PDF

Hydrolysis Rate Study of Chelated Ti Alkoxide by Using U.V. Spectrophotometer (자외선 흡수대를 이용한 Chelated Ti Alkoxide의 수화반응 연구)

  • 김선욱;윤만순;송인호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.975-980
    • /
    • 1991
  • Chelated titanium alkoxides are hydrolysed showly and stable enough to prepare multicomponent gels of titania without its precipitation due to the fast hydrolysis of Ti alkoxide. The alkoxy groups of chelated titanium alkoxide are hydrolysed as fast as that of titanium alkoxide but the chelating groups are stable even in aqueous solution. The chelating groups showed different rates of hydrolysis in aqueous ammonia solution and water added one. Those rates were monitored with UV-VIS spectrophotometer by using their unique absorption bands before and after hydrolysis.

  • PDF

Atomic Layer Deposition of TiO2 using Titanium Isopropoxide and H2O: Operational Principle of Equipment and Parameter Setting

  • Cho, Karam;Park, Jung-Dong;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.346-351
    • /
    • 2016
  • Titanium dioxide ($TiO_2$) films are deposited by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. The operating instructions for the ALD equipment are described in detail, along with the settings for relevant parameters. The thickness of the $TiO_2$ film is measured, and thereby, the deposition rate is quantitatively estimated to verify the linearity of the deposition rate.

Characteristics of Surface Grinding for Heat Treated Titanium Alloy (열처리된 티타늄 합금의 연삭가공 특성)

  • Heo, S.;Kim, W.I.;Wang, D.H.;Lee, Y.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.349-354
    • /
    • 2000
  • A use of Titanium alloy as a structural material is increasing lately. Among those titanium alloys, Ti-6A1-4V alloy is the most popular one with taking 2/3 of it's market. Also, Ti-6A1-4V alloy can get the stability of organization and product measure, and the evaluation of the cutting ability and the mechanical characteristics. The point in titanium alloy work is on how treat the heat generated during grinding. Because the heat conductivity of titanium alloy is unnegligibly low, the grinding heat is accumulated in workpiece, and it cause the increasing of grinding grits' wear and the rough grinding surface. So, these characteristics in grinding of titanium alloy will change the mechanical characteristics of the titanium alloy. From this study, the mechanical characteristics of annealed Ti-6A1-4V alloy after grinding was concerned with checking out the bending strength values, and the factor of the change and the difference was analyzed after analyzing the surface roughness and the image from SEM.

  • PDF

Machining Characteristics of Ti-6Al-4V Thread (Ti-6Al-4V 티타늄 합금나사의 절삭 특성)

  • Kim, Hyung-Sun;Choi, Jong-Guen;Kim, Dong-Min;Lyu, Min-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF

Effects of Ti Underlayer on Microstructure in Cu(B)/Ti/SiO2 Structure upon Annealing (Cu(B)/Ti/SiO2 구조를 열처리할 때 일어나는 미세구조 변화에 미치는 Ti 하지층 영향)

  • Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.829-834
    • /
    • 2004
  • Annealing of $Cu(B)/Ti/SiO_2$ in vacuum has been carried out to investigate the effects of Ti underlayer on microstructure in $Cu(B)/Ti/SiO_2$ structures. For comparison, $Cu(B)/Ti/SiO_2$ structures was also annealed in vacuum. Three different temperature dependence of Cu growth can be seen in $Cu(B)/Ti/SiO_2$; B precipitates- pinned grain growth, abnormal grain growth, normal grain growth. The Ti underlayer having a strong affinity for B atoms reacts with the out-diffused B to the Ti surface and forms titanium boride at the Cu-Ti interface. The formation of titanium boride acts as a sink for the out-diffusion of B atoms. The depletion of boron in grain boundaries of Cu films, as results of the rapid diffusion of B along the grain boundaries and the insufficient segregation of B to the grain boundaries, induces grain boundaries to migrate and causes the abnormal grain growth. The increased bulk diffusion coefficient of B within Cu grains can be responsible for the normal grain growth occurring in the annealed $Cu(B)/Ti/SiO_2\;at\;600^{\circ}C$. In contrast, the $Cu/SiO_2$ structures show only the abnormal growth of grains and their sizes increasing as the temperature increases above $400^{\circ}C$.