Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.12.829

Effects of Ti Underlayer on Microstructure in Cu(B)/Ti/SiO2 Structure upon Annealing  

Lee Jaegab (School of Advanced Materials Engineering, Kookmin University)
Publication Information
Korean Journal of Materials Research / v.14, no.12, 2004 , pp. 829-834 More about this Journal
Abstract
Annealing of $Cu(B)/Ti/SiO_2$ in vacuum has been carried out to investigate the effects of Ti underlayer on microstructure in $Cu(B)/Ti/SiO_2$ structures. For comparison, $Cu(B)/Ti/SiO_2$ structures was also annealed in vacuum. Three different temperature dependence of Cu growth can be seen in $Cu(B)/Ti/SiO_2$; B precipitates- pinned grain growth, abnormal grain growth, normal grain growth. The Ti underlayer having a strong affinity for B atoms reacts with the out-diffused B to the Ti surface and forms titanium boride at the Cu-Ti interface. The formation of titanium boride acts as a sink for the out-diffusion of B atoms. The depletion of boron in grain boundaries of Cu films, as results of the rapid diffusion of B along the grain boundaries and the insufficient segregation of B to the grain boundaries, induces grain boundaries to migrate and causes the abnormal grain growth. The increased bulk diffusion coefficient of B within Cu grains can be responsible for the normal grain growth occurring in the annealed $Cu(B)/Ti/SiO_2\;at\;600^{\circ}C$. In contrast, the $Cu/SiO_2$ structures show only the abnormal growth of grains and their sizes increasing as the temperature increases above $400^{\circ}C$.
Keywords
Cu alloy; Cu(B); titanium boride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. C. Chou, C. Y. Wong, and K. N. Tu, J. Appl. Phys., 62 (1987)
2 J. M. E. Harper, C. Cabral, Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell and C. K. Hu, J. Appl. Phys., 86(5), (1999)   DOI
3 King-Ning Tu, James W. Mayer and Leonard C. Feldman, Electronic Thin Film Science (Macmillan Publishing Company) (1992)
4 S. J. Hong, S. Lee, H. J. Yang, H. M. Lee, Y. K. Ko, H. N. Hong, H. S. Soh, C. K. Kim, C. S. Yoon, K. S. Ban and J. G. Lee, Semicond. Sci. Technol. 19 (2004)   DOI
5 Fried Sauert, Ernst Schultze-Rhonhof and Wang Shu Sheng, Thermochemical Data of Pure Substrances (Brain, Ihsan) (1989)
6 J. M. E. Harper, J. Gupta, D. A. Smith, J. W. Chang, K. L. Holloway, C. Cabral, Jr., D. P. Tracy and D. B. Knorr, Appl. Phys. Lett., 65(2), 11 (1994)   DOI   ScienceOn
7 S. P. Murarka and S. Hymes, Crit. Rev, Solid State Mater. Sci., 20, 87 (1995)   DOI   ScienceOn
8 J.-W. Kim, K. Mimura and M. Isshiki, Applied Surface Science, 217 (2003)
9 W. H. Lee, B. S. Cho, B. J. Kang, H. J. Yang, J. G. Lee, I. K. Woo, S. W. Lee, J. Jang, G. S. Chae and H. S. Soh, Appl. Phy. Lett., 79, 24 (2001)   DOI   ScienceOn
10 C. Whitman, M. M. Moslehi, A. Paranjpe, L. Velo and T. Omstead, J. Vac. Sci Technol., A 17, 1893 (1999)   DOI
11 N. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992)   DOI
12 Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999)   DOI   ScienceOn
13 J. Lin and M. Chen, Jpn. J. Appl. Phys., Part 1, 38, 4863 (1999)   DOI
14 A. Jain, T. T. Kodas, R. Jairath and MJ. Hampden-Smith, J. Vac. Sci. Technol., B11, 2107 (1993)   DOI   ScienceOn