• Title/Summary/Keyword: tissue-specific expression

Search Result 601, Processing Time 0.025 seconds

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus (Cinnamon clownfish Amphiprion melnaopus의 이소토신 유전자 구조와 삼투압 조절이 미치는 영향)

  • Noh, Gyeong Eon;Choi, Mi-Jin;Min, Byung Hwa;Rho, Sum;Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.164-173
    • /
    • 2016
  • Isotocin (IT), a nonapeptide homolog of oxytocin in mammals, has been suggested to be involved in physiological processes including social behaviors, stress responses, and osmoregulation in teleost fish. To study its structure and function, the gene encoding the IT precursor was cloned from the genomic DNA and brain cDNA of the cinnamon clownfish, Amphiprion melanopus. The IT precursor gene consists of three exons separated by two introns, and encodes an open reading frame of 156 amino acid (aa) residues, comprising a putative signal peptide of 19 aa, a mature IT protein of 9 aa, a proteolytic processing site of 3 aa, and 125 aa of neurophysin. Tissue-specific analysis of the IT precursor transcript indicated its expression in the brain and gonads of A. melanopus. To examine its osmoregulatory effects, the salinity of the seawater (34 ppt) used for rearing A. melanopus was lowered to 15 ppt. Histological analysis of the gills indicated the apparent disappearance of an apical crypt on the surface of the gill lamella of A. melanopus, as pavement cells covered the surface upon acclimation to the lower salinity. The level of Na+/K+-ATPase activity in the gills was increased during the initial stage of acclimation, followed by a decrease to its normal level, suggesting its involvement in osmoregulation and homeostasis. The only slight increase in the level of IT precursor transcript in the A. melanopus brain upon low-salinity acclimation suggested that IT played a minor role, if any, in the process of osmoregulation.

Adhesion and Proliferation Behavior of Retinal Pigment Epithelial Cells on Hesperidin/PLGA Films (헤스페리딘/PLGA 필름에서 망막색소상피세포의 부착과 증식거동)

  • Lee, So Jin;Kang, Su Ji;Kim, Hye Yun;Lee, Jung Hwan;Kim, Eun Young;Kwon, Soon Yong;Chung, Jin Wha;Joo, Choun-Ki;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • Retinal pigment epithelium (RPE) plays an important role in maintaining the visual function and the degeneration of the RPE causes several retinal degeneration disease. In order to fabricate the suitable carrier for RPE transplantation, the hybrid poly(lactide-co-glycolide) (PLGA) film with hesperidin was prepared. Hesperidin has an anti-inflammatory and antioxidant characteristics. ARPE-19 was seeded on hesperidin/PLGA film and then, cell proliferation was determined by the MTT assay, and cell adhesion and cell morphology were confirmed by SEM. Also, RT-PCR was performed to confirm the expression of the specific genes, and AEC immunohistochemical staining was performed to determine the expression of RPE65. As a result, we confirmed that attachment, proliferation and phenotype maintenance of RPE cells were more excellent on hesperidin/PLGA film than PLGA film, thereby we were able to confirm the potential applications of hesperidin/PLGA film as tissue engineering carrier for regeneration of retina.

Expression of Antisense Mouse Obese Gene in Transgenic Mice (형질전환 생쥐에서 Antisense 비만유전자의 발현)

  • Kwon, B.S.;Hong, K.H.;Jahng, J.W.;Lee, H.T.;Chung, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.419-428
    • /
    • 2000
  • Leptin, the product of obese (ob) gene, is an adipocyte-derived satiety factor that plays a major role in the regulation of food intake, energy homeostasis, body weight, reproductive physiology and neuropeptide secretion. The present study was designed to generate transgenic mice expressing antisense mouse ob (mob) gene. Total RNA was extracted from the adipose tissues of mouse, then reverse transcription was performed. The 303 and 635 bp fragments of anti I and II cDNAs were amplified from mob cDNAs by PCR. The two mob cDNAs were reversely ligated into between adipose tissue specific aP2 promote and SV40 poly(A) site. Transgenic mice carrying two different kinds of antisense mob transgenes were generated by DNA microinjection into pronucleus. Total 14 transgenic mice were born, and the 4 and 5 founder lines of the transgenic mice with anti I and II transgenes were respectively established. Antisense mRNA expression was detected in transgenic F$_1$ mice by RT-PCR analysis. This result suggests that the transgenic mice expressing antisense mob mRNA may be useful as an animal disease model to be obesity caused by decreased amount of leptin secretion.

  • PDF

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.

Cloning of the posterior silk glands specific-expressed gene of silkworm (누에 후부실샘 특이 발현 유전자 클로닝)

  • Piao, Yulan;Kim, Seong-Ryul;Kim, Sung-Wan;Kang, Seok-Woo;Goo, Tae-Won;Choi, Kwang-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • We characterized tissue specific-expressed genes in the posterior silk gland of Bombyx mori using by the Annealing Control Primer based differential display-PCR manner. In this study, we isolated 34 differentially expressed PCR amplicons, which one of these was identified as a novel transcript named as ACP-16 (366 bp), its expression was observed only in the posterior silk glands by Northern blot analysis. To determine promoter region of the ACP-16, we isolated and analyzed a phage DNA having 1.7 kb-long genome DNA including the open reading flame and 5'- upstream untranslated region of the ACP-16 gene from a genomic DNA library. We have estimated a promoter region of the ACP-16 gene by a web promoter prediction engine, which locates -750 ~ -165 from translation initiation site (ATG, +1). ACP-16 gene is necessary to more studies about critical biological role in order to apply the silkworm's transgenic system.

The Biological Functions of Plant Long Noncoding RNAs (식물의 긴비암호화 RNA들의 생물학적 기능)

  • Kim, Jee Hye;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1097-1104
    • /
    • 2016
  • With the development of next generation sequencing (NGS), large numbers of transcriptional molecules have been discovered. Most transcripts are non -coding RNAs (ncRNAs). Among them, long non-coding RNAs (lncRNAs) with more than 200 nucleotides represent functional RNA molecule that will not be translated into protein. In plants, lncRNAs are transcribed by RNA polymerase II (Pol II) or Pol III, Pol VI and Pol V. After transcription of these lncRNAs, more RNA processing mechanisms such as splicing and polyadenylation occurs. The expression of plant lncRNAs is very low and is tissue specific. However, these lncRNAs are strongly induced by specific external stimuli. Because different external stimuli including environmental stresses induce a large number of plant lncRNAs, these lncRNAs have been gradually considered as new regulatory factors of various biological and development processes such as epigenetic repression, chromatin modification, target mimicry, photomorphogenesis, protein relocalization, environmental stress response, pathogen infection in plants. Moreover, some lncRNAs act as precursor of short RNAs. Although a large number of lncRNAs have been predicted and identified in plants, our current understanding of the biological function of these lncRNAs is still limited and their detailed regulatory mechanisms should be elucidated continuously. Here, we reviewed the biogenesis and regulation mechanisms of lncRNAs and summarized the molecular functions unraveled in plants.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.

Expression Analysis of Glutathione Peroxidase Genes in the Stage-Specific Seminiferous Tubules of Mice Excised by a Laser Capture Microdissection (Laser Capture Microdissection으로 절제된 마우스의 특정 단계별 정세관에서 Glutathione Peroxidase 유전자의 발현 분석)

  • Yon, Jung-Min;Lin, Chun-Mei;Park, Jung-Hoon;Hong, Min-Ki;Jung, A-Young;Kim, Mi-Ra;Baek, In-Jeoung;Lee, Beom-Jun;Nam, Sang-Yoon;Yun, Young-Won
    • Development and Reproduction
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • The seminiferous epithelium, with its division into 12 spermatogenic stages in the mouse, is a very complex tissue. Glutathione peroxidase (GPx) is a representative antioxidant enzyme that is capable of reducing organic hydroperoxides to their corresponding hydroxyl compounds utilizing glutathione and is related to the mammalian spermatogenesis. In this study, a real-time PCR was performed in the stage-specific seminiferous tubules of mouse testes excised by a laser capture microdissection (LCM) in order to quantitate the expression levels of a series of GPx genes including cytosolic GPx (cGPx), gastrointestinal GPx (GI-GPx), plasma GPx (pGPx), and phospholipid hydroperoxide GPx (PHGPx). Frozen sections (10 ${\mu}m$) were obtained from normal adult mouse testes. LCM was used to capture all the cells that were grouped into stages I-V, VII-VIII, and IX-XI in cross-sections of seminiferous tubules. The expression level of PHGPx mRNA was remarkably higher than those of other GPx mRNAs in mouse testes. During spermatogenesis, the expressions of GI-GPx, pGPx, and PHGPx mRNAs were highest on stages VII-VIII, began to decrease after stage XI, and showed a lowest level on stage I-V. However, the expressions of cGPx mRNA were highest on stages VII-VIII, and showed a lowest level on stage XI-XI. These findings indicate that GPx genes are expressed differentially on mouse spermatogenesis and also LCM can be an useful tool in cellular quantitative analysis of testes.

Application of Transposable Elements as Molecular-marker for Cancer Diagnosis (암 진단 분자 마커로서 이동성 유전인자의 응용)

  • Kim, Hyemin;Gim, Jeong-An;Woo, Hyojeong;Hong, Jeonghyeon;Kim, Jinyeop;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1215-1224
    • /
    • 2017
  • Until now, various oncogenic pathways were idenfied. The accumulation of DNA mutation induces genomic instability in the cell, and it makes cancer. The development of bioinformatics and genomics, to find the precise and reliable biomarker is available. This biomarker could be applied the early-dignosis, prediction and convalescence of cancer. Recently, Transposable elements (TEs) have been attracted as the regulator of genes, because they occupy a half of human genome, and the cause of various diseases. TEs induce DNA mutation, as well as the regulation of gene expression, that makes to cancer development. So, we confirmed the relationship between TEs and colon cancer, and provided the clue for colon cancer biomarker. First, we confirmed long interspersed nuclear element-1 (LINE-1), Alu, and long terminal repeats (LTRs) and their relationship to colon cancer. Because these elements have large composition and enormous effect to the human genome. Interestingly, colon cancer specific patterns were detected, such as the hypomethylation of LINE-1, LINE-1 insertion in the APC gene, hypo- or hypermethylation of Alu, and isoform derived from LTR insertion. Moreover, hypomethylation of LINE-1 in proto-oncogene is used as the biomarker of colon cancer metastasis, and MLH1 mutation induced by Alu is detected in familial or hereditary colon cancer. The genes, effected by TEs, were analyzed their expression patterns by in silico analysis. Then, we provided tissue- and gender-specific expression patterns. This information can provide reliable cancer biomarker, and apply to prediction and diagnosis of colon cancer.