Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.2.164

Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus  

Noh, Gyeong Eon (Genetic & Breeding Research Center, National Institute of Fisheries Science)
Choi, Mi-Jin (Department of Fishery Biology, Pukyong National University)
Min, Byung Hwa (Aquaculture Industry Division, National Institute of Fisheries Science)
Rho, Sum (Corea Cheju Origin Rho's Aquariums)
Kim, Jong-Myoung (Department of Fishery Biology, Pukyong National University)
Publication Information
Journal of Life Science / v.26, no.2, 2016 , pp. 164-173 More about this Journal
Abstract
Isotocin (IT), a nonapeptide homolog of oxytocin in mammals, has been suggested to be involved in physiological processes including social behaviors, stress responses, and osmoregulation in teleost fish. To study its structure and function, the gene encoding the IT precursor was cloned from the genomic DNA and brain cDNA of the cinnamon clownfish, Amphiprion melanopus. The IT precursor gene consists of three exons separated by two introns, and encodes an open reading frame of 156 amino acid (aa) residues, comprising a putative signal peptide of 19 aa, a mature IT protein of 9 aa, a proteolytic processing site of 3 aa, and 125 aa of neurophysin. Tissue-specific analysis of the IT precursor transcript indicated its expression in the brain and gonads of A. melanopus. To examine its osmoregulatory effects, the salinity of the seawater (34 ppt) used for rearing A. melanopus was lowered to 15 ppt. Histological analysis of the gills indicated the apparent disappearance of an apical crypt on the surface of the gill lamella of A. melanopus, as pavement cells covered the surface upon acclimation to the lower salinity. The level of Na+/K+-ATPase activity in the gills was increased during the initial stage of acclimation, followed by a decrease to its normal level, suggesting its involvement in osmoregulation and homeostasis. The only slight increase in the level of IT precursor transcript in the A. melanopus brain upon low-salinity acclimation suggested that IT played a minor role, if any, in the process of osmoregulation.
Keywords
Arginine vasotocin; cinnamon clownfish; isotocin; osmoregulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Specker, J. L., Schreiber, A. M., McArdle, M. E., Poholek, A., Henderson, J. and Bengtson, D. A. 1999. Metamorphosis in summer flounder: effects of acclimation to low and high salinities. Aquaculture 176, 145-154.   DOI
2 Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
3 Tipsmark, C. K., Madsen, S. S. and Borski, R. J. 2004. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J. Exp. Zool. A Comp. Exp. Biol. 301, 979-991.
4 Urano, A., Kubokawa, K., Suzuki, M. and Ando, H. 1996. Comparative aspects of neurohypophyseal hormone genes. The peptidergic neuron; Krisch, B. and Mentlein, R. (eds) 211-219.
5 Wabnitz, C., Taylor, M., Green, E. and Razak, T. 2003. From ocean to aquarium : The global trade in marine ornamental species. In. Cambridge, UK: UNEP-WCMC; 6-54.
6 Warne, J. M., Hyodo, S., Harding, K. and Balment, R. J. 2000. Cloning of pro-vasotocin and pro-isotocin cDNAs from the flounder Platichthys flesus; levels of hypothalamic mRNA following acute osmotic challenge. Gen. Comp. Endocrinol. 119, 77-84.   DOI
7 Wilkerson, J. D. 2001. Clownfish: A guide their captive care, breeding & natural history. New Jersey: T.F.H. Publications Inc..
8 Motohashi, E., Hasegawa, S., Mishiro, K. and Ando, H. 2009. Osmoregulatory responses of expression of vasotocin, isotocin, prolactin and growth hormone genes following hypoosmotic challenge in a stenohaline marine teleost, tiger puffer (Takifugu rubripes). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 154, 353-359.   DOI
9 Noh, G. E., Rho, S., Chang, Y. J., Min, B. H. and Kim, J. M. 2013. Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities. Aquat. Biosys. 9, 1-9.   DOI
10 Park, M. S., Kim, N. N., Shin, H. S., Min, B. H., Kil, G. S., Cho, S. H. and Choi, C. Y. 2012. Hypoosmotic shock adaptation by prolactin involves upregulation of arginine vasotocin and osmotic stress transcription factor 1 mRNA in the cinnamon clownfish Amphiprion melanopus. Anim. Cells Syst. 16, 391-399.   DOI
11 Shikano, T. and Fujio, Y. 1998. Relationships of salinity tolerance to immunolocalization of Na+, K+-ATPase in the gill epithelium during seawater and freshwater adaptation of the guppy, Poecilia reticulata. Zool. Sci. 15, 35-41.   DOI
12 O′Connell, L. A., Matthews, B. J. and Hofmann, H. A. 2012. Isotocin regulates paternal care in a monogamous cichlid fish. Horm. Behav. 61, 725-733.   DOI
13 Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. and Schulte, P. M. 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell. Physiol. 287, C300-C309.   DOI
14 Shikano, T. and Fujio, Y. 1998. Immunolocalization of Na+/K+-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201, 3031-3040.
15 Laiz-Carrión, R., Sangiao-Alvarellos, S., Guzmán, J. M., Martín del Río, M. P., Soengas, J. L. and Mancera, J. M. 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: Implications for osmoregulation and energy metabolism. Aquaculture 250, 849-861.   DOI
16 Lin, C. H., Tsai, R. S. and Lee, T. H. 2004. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. 138, 287-295.   DOI
17 Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D. and Lee, T. H. 2006. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A 143, 406-415.   DOI
18 Manzon, L. A. 2002. The role of prolactin in fish osmoregulation: a review. Gen. Comp. Endocrinol. 125, 291-310.   DOI
19 McCormick, S. D. 2001. Endocrine control of osmoregulation in fish. Am. Zool. 282, 290-300.
20 Marshall, W. S., Lynch, E. M. and Cozzi, R. R. F. 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to seawater. J. Exp. Biol. 205, 1265-1273.
21 Michael, S. W. 2008. Damselfishes & Anemonefishes. New Jersey: T.F.H. Publications Inc.
22 Moorhead, J. A. and Zeng, C. 2000. Development of captive breeding techniques for marine ornamental fish: a Review. Rev. Fish Sci. 18, 315-343.
23 Hart, P. R. and Purser, G. J. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder Rhombosolea tapirina Günther, 1862. Aquaculture 136, 221-230.   DOI
24 Hirose, S., Kaneko, T., Naito, N. and Takei, Y. 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B 136, 593-620.   DOI
25 Hoff, F. H. 1996. Conditioning, spawning and rearing of fish with emphasis on marine clownfish. Dade City, FL: Aquaculture Consultants Inc.
26 Imsland, A. K., Gústavsson, A., Gunnarsson, S., Foss, A., Árnason, J., Arnarson, I., Jónsson, A. F., Smáradóttir, H. and Thorarensen, H. 2008. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Altantic halibut Hippoglossus hippoglossus L.. Aquaculture 274, 254-259.   DOI
27 Karnaky, K. J. 1986. Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am. Zool. 26, 209-224.   DOI
28 Banerjee, P., Chaube, R. and Joy, K. P. 2015. Molecular cloning, sequencing and tissue expression of vasotocin and isotocin precursor genes from Ostariophysian catfishes : phylogeny and evolutionary considerations in teleosts. Front. Neurosci. 9, 166.
29 Katoh, F. and Kaneko, T. 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113-4123.   DOI
30 Kulczykowska, E. 2007. Arginine vasotocin and isotocin: towards their role in fish osmoregulation. pp. 151-176. In: Baldisserotto, B., Mancero Romero, J. M., Kapoor, B. G. (eds.) Fish Osmoregulation. Science Publisher, Enfield, N.H
31 Bœuf, G. and Payan, P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C 130, 411-423.
32 Cowen, R. K. 2002. Larval dispersal and retention and consequences for population connectivity, pp. 149-169. In: Sale, P. F. (eds.), Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. New York: Academic Press.
33 Evans, D. H., Piermarini, P. M. and Potts, W. T. W. 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283, 641-652.   DOI
34 Godwin, J. and Thompson, R. 2012. Nonapeptides and social behavior in fishes. Horm. Behav. 61, 230-238.   DOI
35 Gozdowska, M., Kleszczyńska, A., Sokołowska, E. and Kulczykowska, E. 2006. Arginine vasotocin (AVT) and isotocin (IT) in fish brain: Diurnal and seasonal variations. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 330-334.   DOI