• 제목/요약/키워드: tissue specific proteins

검색결과 154건 처리시간 0.037초

Methylation of the Mouse Dlx5 and Osx Gene Promoters Regulates Cell Type-specific Gene Expression

  • Lee, Ji Yun;Lee, Yu Mi;Kim, Mi Jin;Choi, Je Yong;Park, Eui Kyun;Kim, Shin Yoon;Lee, Sam Poong;Yang, Jae Sup;Kim, Dong Sun
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.182-188
    • /
    • 2006
  • Dlx5 and Osx are master regulatory proteins essential for initiating the cascade leading to osteoblast differentiation in mammals, but the mechanism of osteoblast-specific expression is not fully understood. DNA methylation at CpG sequences is involved in tissue and cell type-specific gene expression. We investigated the methylation status of Dlx5 and Osx in osteogenic and nonosteogenic cell lines by methylationspecific PCR (MSP). The CpG dinucleotides of the Dlx5 and Osx promoter regions were unmethylated in osteogenic cell lines transcribing these genes but methylated in nonosteogenic cell lines. Treatment of C2C12 cells with 5-AzadC induced dose- and timedependent expression of Dlx5 and Osx mRNA by demethylating the corresponding promoters. Furthermore the mRNAs for the osteoblast markers ALP and OC, which were undetectable in untreated cells, gradually increased after 5-AzadC treatment. In addition, BMP-2 stimulation induced Dlx5 expression by hypomethylating its promoter. These findings suggest that DNA methylation plays an important role in cell type-specific expression of Dlx5 and Osx.

Long noncoding RNA involvement in cancer

  • Maruyama, Reo;Suzuki, Hiromu
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.604-611
    • /
    • 2012
  • Recent advances in genome and transcriptome analysis have enabled identification of numerous members of a new class of noncoding RNA, long noncoding RNA (lncRNA). lncRNAs are broadly defined as RNA molecules greater than 200 nt in length and lacking an open reading frame. Recent studies provide evidence that lncRNAs play central roles in a wide range of cellular processes through interaction with key component proteins in the gene regulatory system, and that alteration of their cell- or tissue-specific expression and/or their primary or secondary structures is thought to promote cell proliferation, invasion and metastasis. The biological and molecular characteristics of the large majority of lncRNAs remains unknown, and it is anticipated that improved understanding of the roles played by lncRNAs in cancer will lead to the development of novel biomarkers and effective therapeutic strategies.

Immunohistochemical Expression of Caspase 3 and Its Relationship with p53 Expression in Endometrial Cancers

  • 이경은
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.307-310
    • /
    • 2010
  • Apoptosis is an important significance in the pathogenesis of cancer. Caspase 3 and p53 have been identified as important members of the apoptosis related proteins. This study was performed to define roles of caspase 3 expression and its relationship with p53 expression in endometrial cancers by immunohistochemistry. Immunoreactivity for caspase 3 was found in 13 (65.0%) out of 20 endometrial hyperplasia cases and 8 (36.4%) out of 22 endometrial cancers. Seven (87.5%) of the 8 cases with a positive caspase 3 immunoreactivity showed a positive p53 expression in 22 endometrial cancers. There were no significant associations between caspase 3 and p53 expressions. These findings suggest that caspase 3 expression might be associated with carcinogenesis of endometrial cancers. Further studies are needed to define the relationship between caspase 3 and p53 and apoptosis for examining the mechanisms of tissue-specific apoptosis related protein.

Immunolocalization of the 150 kDa protein in cyst fluid of Taenia solium metacestodes

  • Yang, Hyun-Jong;Chung, Young-Bae
    • Parasites, Hosts and Diseases
    • /
    • 제42권2호
    • /
    • pp.81-84
    • /
    • 2004
  • The 150 kDa protein of cyst fluid (CF) of Taenia solium metacestodes was purified by ammonium sulfate fractionation and Superose 6 HR gel filtration chromatography. The purified protein consisted of three subunits (15, 10 and 7 kDa proteins), which were analyzed with the use of a 7.5-15% gradient sodium dodecyl sulfate polyacrylamide gel electrophoresis (SOS-PAGE). Immunofluorescence study was carried out by using immunize specific polyclonal antibody. Positive reactions were noticed at bladder walls, calcareous corpuscles, granules of cyst fluid and some host tissue surrounding the bladder wall of the metacestodes. These results suggest that the 150 kDa protein was secreted into host tissues, inducing immune responses in the host, and it may play important roles in the cellular physiology of the parasites.

RAS SIGNALING IN INVASION AND MOTILITY OF MCF10A HUMAN BREAST EPITHELIAL CELLS

  • Kim, Mi-Sung;Lee, Eun-Jung;Shin, Il-Chung;Ahn, Seong-Min;Hyun Song;Kim, Hyeong-Reh-Choi;Aree Moon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.76-77
    • /
    • 2002
  • Ras expression has been suggested as a marker for tumor aggressiveness of breast cancer including the degrees of invasion and tumor recurrence. Expression of H-, K-, and N-ras is regulated in a tissue-specific manner and during development, indicating that ras proteins may have different cellular functions.(omitted)

  • PDF

식물의 자가불화합성, 최근의 진보 (Recent Advances in the Studies of Self-Incompatibility of plants)

  • 한창열;한지학
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

생체에서 분리된 혈관조직에서 아데노바이러스벡터를 이용한 특정 단백질의 발현 (Targeted Protein Expression in Freshly Isolated Vascular Tissues by Using Adenoviral Vector)

  • 허양훈;김학림
    • 약학회지
    • /
    • 제57권4호
    • /
    • pp.265-271
    • /
    • 2013
  • Treatments of vascular disease via modulating the expression of specific proteins by gene transfer have been attempted in various studies over the past few years. Among several methods to deliver genes, adenovirus currently has been used because of a number of positive aspects. In this study, we test adenoviral vector as a potential mediator in the treatment of vascular disease by using freshly isolated vascular tissues not cultured vascular cells. Freshly isolated vascular tissues were directly exposed to adenoviral vector pAd5CMVmcsIRESeGFPpA to check the possibility of GFP expression in different layer of vascular tissues. We found that the GFP expression by using adenoviral vector experiments is mainly focused on the adventitia and failed to detect GFP expression at endothelial layer or vascular smooth muscle layer in vascular tissues. However, we also found that several integrin receptors are robustly expressed in vascular smooth muscle, thus the limited expression of protein in vascular smooth muscle are not likely the lack of integrin receptors. In conclusion, adenovirus could not be a good tool for a specific protein expression in vascular smooth muscle cell. Thus, the application of adenovirus as a tool for gene therapy of vascular smooth muscle cells in clinical therapeutic trial need to be optimized further.

인체 S100A6 단백질에 특이한 단일클론 항체 (Characterization of the Monoclonal Antibody Specific to Human S100A6 Protein)

  • 김재화;윤선영;주종혁;강호범;이영희;최용경;최인성
    • IMMUNE NETWORK
    • /
    • 제2권3호
    • /
    • pp.175-181
    • /
    • 2002
  • Background: S100A6 is a calcium-binding protein overexpressed in several tumor cell lines including melanoma with high metastatic activity and involved in various cellular processes such as cell division and differentiation. To detect S100A6 protein in patient' samples (ex, blood or tissue), it is essential to produce a monoclonal antibody specific to the protein. Methods: First, cDNA coding for ORF region of human S100A6 gene was amplified and cloned into the expression vector for GST fusion protein. We have produced recombinant S100A6 protein and subsequently, monoclonal antibodies to the protein. The specificity of anti-S100A6 monoclonal antibody was confirmed using recombinant S100A recombinant proteins of other S100A family (GST-S100A1, GST-S100A2 and GST-S100A4) and the cell lysates of several human cell lines. Also, to identify the specific recognition site of the monoclonal antibody, we have performed the immunoblot analysis with serially deleted S100A6 recombinant proteins. Results: GST-S100A6 recombinant protein was induced and purified. And then S100A6 protein excluding GST protein was obtained and monoclonal antibody to the protein was produced. Monoclonal antibody (K02C12-1; patent number, 330311) has no cross-reaction to several other S100 family proteins. It appears that anti-S100A6 monoclonal antibody reacts with the region containing the amino acid sequence from 46 to 61 of S100A6 protein. Conclusion: These data suggest that anti-S100A6 monoclonal antibody produced can be very useful in development of diagnostic system for S100A6 protein.

The Clinicopathological and Prognostic Impact of 14-3-3 Protein Isoforms Expression in Human Cholangiocarcinoma by Immunohistochemistry

  • Wu, Qiao;Liu, Chang-Zheng;Tao, Lian-Yuan;Yu, Lan;Liu, Wei;Chen, Song-Sen;He, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1253-1259
    • /
    • 2012
  • The 14-3-3 proteins are highly conserved, ubiquitous molecules involved in a variety of biologic phenomena, such as cell cycle control, and apoptosis. However, their expression in cholangiocarcinoma has not been previously characterized. In this paper, immunohistochemistry using specific anti-14-3-3 monoclonal antibodies was performed on formalin-fixed;, paraffin embedded archival tissue from 86 patients of cholangiocarcinoma. We also examined the correlation between expression and survival rate and clinicopathologic factors such as tumor location, tumor size, pathologic differentiation, lymphatic permeation, lymph node metastasis, and tumor stage. Positive 14-3-3 proteins expression was observed for 6 isoforms (${\beta}$, ${\sigma}$, ${\gamma}$, ${\theta}$, ${\delta}$, ${\eta}$) of these proteins in 86 patients of cholangiocarcinoma. ${\beta}$ and ${\sigma}$ isoform immunoreactivity was correlated with lymph node metastasis, tumor stage and patients' survival rate. In addition, ${\delta}$ isoform immunoreactivity showed trends with tumor location, tumor size, pathologic differentiation and tumor stage, while the ${\theta}$ isoform was correlated with pathologic differentiation. These results indicated that upregulated expression of some isoforms of 14-3-3 may be a common mechanism for evading apoptosis in cholangiocarcinoma, so that targeting 14-3-3 may be a novel promising strategy for the treatment of this tumor.