• Title/Summary/Keyword: tire sidewall

Search Result 31, Processing Time 0.04 seconds

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.

Optimal Design of Tire Sidewall Contour using Neural Network (신경회로망을 활용한 타이어 측벽형상의 최적설계)

  • Jeong, H.S.;Shin, S.W.;Cho, J.R.;Kim, N.J.;Kim, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.378-383
    • /
    • 2001
  • In order to improve automobile maneuverability and tire durability, it is very important for one to determine a suitable sidewall contour producing the ideal tension and strain-energy distributions. In order to determine such a sidewall contour, one must apply multi-objective optimization technique. The optimization problem of tire carcass contour involves several objective functions. Hence, we execute the tire contour optimization for improving the maneuverability and the tire durability using satisficing trade-off method. And, the tire optimization also requires long cup time for the sensitivity analysis. In order to resolve this numerical difficulty, we apply neural network algorithm.

  • PDF

Development of GUI-based Program for Optimum Design of Double-ply Tire Sidewall Contour (Double-ply로 구성된 타이어 측벽형상 최적설계를 위한 GUI기반 프로그램 개발)

  • Shon, Jung-Sam;Cho, Jin-Rae;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.525-530
    • /
    • 2004
  • In this paper, the optimum design of tire sidewall contour consisted of double plies for improving automobile maneuverability and tire durability is considered and a GUI program is developed for the purpose of the practical design. Each improvement of maneuverability and durability depends on the cord tension and strain energy distribution of tire sidewall. Satisfing trade-off method, which requires the judgment of aspiration levels, is used for the multi-objective optimization problem. Also, this paper presents the application to the practical sidewall contour design with the GUI program developed using visual Fortran.

  • PDF

Optimal Design of Tire Sidewall Contours for Improving Maneuverability and Durability (조정성과 내구성 향상을 위한 타이어 측벽형상 최적설계)

  • Jo, Jin-Rae;Jeong, Hyeon-Seong;Lee, Hong-U;Kim, Nam-Jeon;Kim, Gi-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1636-1643
    • /
    • 2001
  • Automobile maneuverability and tire durability are significantly influenced by the sidewall tire contour. In order to improve these tire performances, it is very important far one to determine a sidewall contour producing the ideal tension and strain-energy distributions. However, these requirements can nut be simultaneously achieved by conventional non-interactive multi-objective optimization methods based on mathematical programming, because these exhibit the conflicting behavior each other, with respect lo the sidewall contour. Therefore, we execute the tire contour optimization fur improving the maneuverability and the tire durability using satisficing trade-off method.

Finite Element Analysis for the Variation of Carcass Tension Distribution to the Sidewall-Radius Change (Sidewall 반경변화에 따른 Carcass 장력분포 변동 추이에 관한 유한요소 해석)

  • Jo, Jin-Rae;Jeong, Hyeon-Seong;Lee, Hong-U;Kim, Nam-Jeon;Kim, Gi-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.980-987
    • /
    • 2001
  • Tire performance is significantly influenced by the carcass tension distribution that is governed by the sidewall contour. To maximize the tire performance, it is very important for one to find the sidewall contour with the ideal tension distribution. But it is not easy to find such an optimal sidewall contour. Therefore, in order for a successful tire-shape optimization, we need to investigate how the change of sidewall radius influences on the carcass tension distribution. In this paper, we intend to numerically investigate the relation between the sidewall-radius change and the carcass tension distribution.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

A Study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber (타이어 사이드월 고무의 피로특성 및 수명예측에 관한 연구)

  • Moon, Byungwoo;Kim, Yongseok;Jun, Namgyu;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.629-634
    • /
    • 2017
  • In the case of the UHP (Ultra high performance) tire that the demand has increased rapidly, compared with the commonly used tire, severe deformation has been observed because of the low aspect ratio. When repeated deformations are applied to the sidewall rubber, accumulated fatigue damage may cause fatigue failure. Thus, the evaluation of the durability of the tire sidewall rubber has become a very important issue to prevent accidents that occur while the vehicle is running. However, the research and design criteria for the durability performance of the tire sidewall rubber hardly exist. In this study, we suggest a lifetime prediction formula using strain energy density obtained by performing tensile tests and fatigue tests on two different kinds of the tire sidewall compounds. Additionally, the applicability of our findings for low fuel consumption tires was reviewed by converting the fatigue life of the sidewall rubber into the expected mileage of the tire.

Analysis of the Cooling Fin for the Temperature Reduction of the Tire Sidewall (타이어 사이드월 온도 저감을 위한 Cooling Fin 해석)

  • Park, JaeHyen;Jung, SungPil;Chang, WonSun;Chun, ChulKyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.862-867
    • /
    • 2014
  • When the vehicle is traveling, the deformation caused by friction continued with the ground is made to occur because the tire is the composite material of a viscoelastic. Part of the deformation energy is converted into heat energy as Hysteresis and temperature inside the tire rises. The generated heat is shed to the outside through the convection and evangelism. Increase in the internal temperature of the tire is difficult to ensure the safety of vehicle by damage to the tire during driving. Recently, Even when the tire is damaged, it is designed to be possible to driving in case of run-flat tires but the fact is that the development of the technology for the synergistic effect of heat release inside the tire by the side reinforcement is necessary. In this study, by using the Finite Element Method (FEM), applying the cooling fins to the tire sidewall, it is intended to check the temperature distribution along the shape of the cooling fins and the temperature reduction effect.

  • PDF

Calculation of Sidewall Lateral Stiffness of a Radial Tire Using Material Properties of Rubber Compounds (고무배합물의 물성을 이용한 레이디얼 타이어의 사이드월 횡강성 계산)

  • Kim, Yong-Woo;Kim, Jong-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1667-1675
    • /
    • 2003
  • This paper has considered the calculation of lateral stiffness of radial tire's sidewall, which consists of cord stiffness and rubber sheet stiffness, by using the material constants of rubber compounds of tire. We have suggested and illustrated how to calculate the rubber sheet lateral stiffness by considering the following aspects. First, the rubber sheet consists of various kinds of rubber compounds with different thickness along the sidewall in the radial direction. Secondly, equivalent Young's modulus of the rubber sheet can be calculated by using available experimental data of rubber compounds. The present method enables us to divide the calculation domain as many as we want, which can reduce numerical error in the calculation of geometrical and mechanical properties. We have illustrated the calculation by using the data of the radial tire for passenger car of P205/60R15.