• Title/Summary/Keyword: tip deflection

Search Result 113, Processing Time 0.027 seconds

Vibration Analysis of Tapered Bar (경사진 봉의 진동 해석)

  • 박석주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.984-987
    • /
    • 2003
  • This paper discusses the lateral vibration of a bar which has its tip free. The uniform bar has a solution by summation of some simple exponential functions. But if its shape is not uniform, its solution could be by Bessel's function, or mathematical solution could not be existed. Even if the solution of Bessel's function exists. as Bessel function is a series function, we must get the solution by numerical method, Hereof the author proposes the solution of the matrix method by Ritz's method, and proposes a new deflection shape

  • PDF

A Study on Application of GPS for Deflection Management of Curved PCT Girder Bridge under Construction (시공 중 곡선형 PCT 거더교의 처짐 관리를 위한 GPS 적용 연구)

  • Kyu Dal, Lee;Jin Duk, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.453-461
    • /
    • 2015
  • In order to manage the deflection of a curved PCT girder bridge during construction, a GPS receiver was installed at the spot predicted to be the weak point during the incremental launching so as to measure the deflection at each construction stage. The deflections obtained in the experiment were compared with those derived from the monitoring of stress, temperature and inclination. The comparative analysis of the GPS measurement and analytical values obtained from finite element modeling with respect to the launching distance showed that the measured values differ by 0.6 to 1.6 times to the analytical results. This difference could be significantly reduced by thermal calibration. From the analysis of the behavioral pattern of the bridge, deflection occurred during construction in the concrete tip due to the deflection at the head of the nose at the 95m and 75m-spots, and compression and tension developed respectively at the compression weak zone and tension weak zone. The application of GPS appeared to enable more efficient management of the deflection during the erection of the curved PCT girder bridge and is expected to be helpful for the prediction and management of the behavior in future ILM construction sites.

Toughening of SiC Whisker Reinforced Al2O3 Composite (SiC 휘스커 강화 Al2O3 복합재료의 고인화)

  • Kim Yon Jig;Song Jun Hee
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

Thermopiezoelectric Cantilever for Probe-Based Data Storage System

  • Jang, Seong-Soo;Jin, Won-Hyeog;Kim, Young-Sik;Cho, Il-Joo;Lee, Dae-Sung;Nam, Hyo-Jin;Bu, Jong. U.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • Thermopiezoelectric method, using poly silicon heater and a piezoelectric sensor, was proposed for writing and reading in a probe based data storage system. Resistively heated tip writes data bits while scanning over a polymer media and piezoelectric sensor reads data bits from the self-generated charges induced by the deflection of the cantilever. 34${\times}$34 array of thermopiezoelectric nitride cantilevers were fabricated by a single step wafer level transfer method. We analyzed the noise level of the charge amplifier and measured the noise signal. With the sensor and the charge amplifier 20mn of deflection could be detected at a frequency of 10KHz. Reading signal was obtained from the cantilever array and the sensitivity was calculated.

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

The Tip Position Measurement of a Flexible Robot Arm Using a Vision Sensor (비전 센서를 이용한 유연한 로봇팔의 끝점 위치 측정)

  • Shin, Hyo-Pil;Lee, Jong-Kwang;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.682-688
    • /
    • 2000
  • To improve the performance of a flexible robot arm one of the important things is the vibration displacement measurement of a flexible arm. Many types of sensors have been used to measure it, The most popular has been strain gauges which measures the deflection of the beam,. Photo sensors have also been for detecting beam displacement and accelerometers are often used to measure the beam vibration. But the vibration displacement can be obtained indirectly from these sensors. In this article a vision sensor is used as a displacement sensor to measure the vibration displacement of a flexible robot arm. Several schemes are proposed to reduce the image processing time and increase its accuracy. From the experimental results it is seen that the vision sensor can be an alternative sensor for measuring the vibration displacement and has a potential for on-line tip position control of flexible robot systems.

  • PDF

Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature

  • Wilson, James F.;Strong, Daniel J.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 1997
  • The elastic deflections and Euler buckling loads are investigated for a class of tapered and initially curved cantilevered beams subjected to loading at the tip. The beam's width increases linearly and its depth decreases linearly with the distance from the fixed end to the tip. Unloaded, the beam forms a circular are perpendicular to the axis of bending. The beam's deflection responses, obtained by solving the differential equations in closed form, are presented in terms of four nondimensional system parameters: taper ratio ${\kappa}$, initial shape ratio ${\Delta}_0$, end load ratio f, and load angle ${\theta}$. Laboratory measurements of the Euler buckling loads for scale models of tapered initially straight, corrugated beams compared favorably with those computed from the present analysis. The results are applicable to future designs of the end structures of highway guardrails, which can be designed to give the appropriate balance between the capacity to deflect a nearly head-on vehicle back to its right-of-way and the capacity to buckle sufficiently that penetration of the vehicle may be averted.

Minimum dynamic response of cantilever beams supported by optimal elastic springs

  • Aydin, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.377-402
    • /
    • 2014
  • In this study, optimal distribution of springs which supports a cantilever beam is investigated to minimize two objective functions defined. The optimal size and location of the springs are ascertained to minimize the tip deflection of the cantilever beam. Afterwards, the optimization problem of springs is set up to minimize the tip absolute acceleration of the beam. The Fourier Transform is applied on the equation of motion and the response of the structure is defined in terms of transfer functions. By using any structural mode, the proposed method is applied to find optimal stiffness and location of springs which supports a cantilever beam. The stiffness coefficients of springs are chosen as the design variables. There is an active constraint on the sum of the stiffness coefficients and there are passive constraints on the upper and lower bounds of the stiffness coefficients. Optimality criteria are derived by using the Lagrange Multipliers. Gradient information required for solution of the optimization problem is analytically derived. Optimal designs obtained are compared with the uniform design in terms of frequency responses and time response. Numerical results show that the proposed method is considerably effective to determine optimal stiffness coefficients and locations of the springs.

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Dynamic Behavior of Rotating Cantilever Pipe Conveying Fluid with Moving Mass (이동질량을 가진 유체유동 회전 외팔 파이프의 동특성)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.586-594
    • /
    • 2005
  • In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bernoulli beam theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever pipe is more sensitive to the effect of a angular velocity. Totally, as the moving mass is increased, the frequency of a cantilever pipe is decreased in steady state.