• Title/Summary/Keyword: time-varying: delay

Search Result 313, Processing Time 0.045 seconds

Optimal Control Of Two-Hop Routing In Dtns With Time-Varying Selfish Behavior

  • Wu, Yahui;Deng, Su;Huang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2202-2217
    • /
    • 2012
  • The transmission opportunities between nodes in Delay Tolerant Network (DTNs) are uncertain, and routing algorithms in DTNs often need nodes serving as relays for others to carry and forward messages. Due to selfishness, nodes may ask the source to pay a certain reward, and the reward may be varying with time. Moreover, the reward that the source obtains from the destination may also be varying with time. For example, the sooner the destination gets the message, the more rewards the source may obtain. The goal of this paper is to explore efficient ways for the source to maximize its total reward in such complex applications when it uses the probabilistic two-hop routing policy. We first propose a theoretical framework, which can be used to evaluate the total reward that the source can obtain. Then based on the model, we prove that the optimal forwarding policy confirms to the threshold form by the Pontryagin's Maximum Principle. Simulations based on both synthetic and real motion traces show the accuracy of our theoretical framework. Furthermore, we demonstrate that the performance of the optimal forwarding policy with threshold form is better through extensive numerical results, which conforms to the result obtained by the Maximum Principle.

Time Discretization of the Nonlinear System with Variable Time-delayed Input using a Taylor Series Expansion

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2562-2567
    • /
    • 2005
  • This paper suggests a new method discretization of nonlinear system using Taylor series expansion and zero-order hold assumption. This method is applied into the sampled-data representation of a nonlinear system with input time delay. Additionally, the delayed input is time varying and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. Them mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. And 'hybrid' discretization scheme that result from a combination of the ‘scaling and squaring' technique with the Taylor method are also proposed, especially under condition of very low sampling rates. The computer simulation proves the proposed algorithm discretized the nonlinear system with the variable time-delayed input accurately.

  • PDF

Parameter-dependent Robust Stability of Uncertain Singular Systems with Time-varying Delays (시변 시간지연을 가지는 불확실 특이시스템의 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.

Stabilization of Input-Delayed TS Fuzzy Systems

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.140-143
    • /
    • 2001
  • In this paper, a control problem of the Takagi-Sugeno(TS) fuzzy system with time-varying input delay is considered. It is well known that the delay is one of the major sources responsible for the instability of the controlled system. A systematic design technique is developed based on the Lyapunov-Razumikhin stability theorem. A sufficient condition for the global asymptotic stability of the TS fuzzy systems is formulated in terms of linear matrix inequalities (LMIs). The derived condition can deal with any time-varying input delay within the admissible bound. The effectiveness of the proposed controller design technique is demonstrated by a numerical simulation.

  • PDF

Asymptotic Stability of Discrete-Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.641-643
    • /
    • 1998
  • This paper deals with the stability of discrete time linear systems with time - varying delays in state. In this paper, the magnitude of time - varying delays is assumed to be upper-bounded. The stability of discrete time linear systems with time - varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

Design of Group Delay Time Controller Based on a Reflective Parallel Resonator

  • Chaudhary, Girdhari;Choi, Heung-Jae;Jeong, Yong-Chae;Lim, Jong-Sik;Kim, Chul-Dong
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.210-215
    • /
    • 2012
  • In this paper, a group delay time controller (GDTC) is proposed based on a reflection topology employing a parallel resonator as the reflection termination. The design equations of the proposed GDTC have been derived and validated by simulation and experimental results. The group delay time can be varied by varying the capacitance and inductance at an operating frequency. To show the validity of the proposed circuit, an experiment was performed for a wideband code division multiple access downlink band operating at 2.11 GHz to 2.17 GHz. According to the experiment, a group delay time variation of $3{\pm}0.17$ ns over bandwidth of 60 MHz with excellent flatness is obtained.

A Study on the STC Utilizing Expert Control Technique (Expert형 제어기법에 의한 자기동조 제어기에 관한 연구)

  • 최창현;이창훈;임은빈;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.617-628
    • /
    • 1989
  • In systematic tuning of digital STC parameters, systems with time-varying parameters and systems with time-varying delays are studied individually because of many preconditions and difficulties. In order to eliminate all these difficulties effectively, the expert control technique is required to enhance STC control functions. In this paper, an expert controller, a STC utilizing expert control technique, for process control is designed. The expert controller is composed of an unstability indicator for detecting plant unstability, an expert back-up controller and an expert STC which are switched each other by the unstability indication, and expert system with knowledge base and inference engine. This expert controller is able to perform control functions successfuly for the following` 1) a system which has unknown and time-varying delay time, 2) a time-varying system which has unknown parameters, and 3) a system with minimun and non-minimum phase. The robust control function is demonstrated by computer simulations.

  • PDF

Effect of Delay Time Control on the Spatter Generation in $CO_2$ Welding ($CO_2$ 용접에서 스패터 발생에 미치는 지연시간 제어의 영향)

  • 이창한;김희진;강봉용
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.61-68
    • /
    • 1999
  • For the last two decades, waveform control techniques have been successively developed and applied for the inverter welding machines resulting in the substantial reduction of spatter generated in CO₂ welding. One of the constituents commonly involved in those techniques is to delay the instant of current increase to some extent after the initiation of short-circuiting. Although this technique has been known to be quite effective in reducing the spatter generation through the suppression of is instantaneous short circuiting, the delay time necessary for minimum spatter has not been clearly understood. In this study, the control system for varying the delay time was constructed so that the spatter generation rates could be measured over a wide range of delay time, 0.29-2.0 msec. As a result of this study, it was demonstrated that spatter generation rate(SGR) sharply decreased at delay time of 0.6 msec and longer accompanied with the change in characteristics of short circuit mode from the instantaneous short-circuiting(ISC) dominant to normal short-circuiting(NSC) dominant. Another feature that have been found in current waveform of over 0.6msec was the creation of current pulse right after the arc reignition stage. Because of this current pulses weld pool oscillated in wave-like fashion and it looks like to play an important role in developing short circuiting between electrode and weld pool.

  • PDF

Feedback stabilization of linear systems with delay in state (상태변수에 지연요소를 갖는 시스템의 안정화 방법에 관한 연구)

  • 권욱현;임동진
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 1982
  • This paper suggests easy stabilization methods for linear time-varying systems with delay in the state. While existing methods employ the function space concept, the methods introduced in this paper transform the delay systems into the non-delay systems so that the well known methods for finite dimensional systems can be utilized. Particularly the intervalwise predictor is introduced and shown to satisfy an ordinary system. Control laws stabilizing the non-delay systems satisfied by this predictor will be shown to at least pointwise stabilize the delay systems with the additional strong possibility of true stabilization. In order to combine two steps of the predictor method, first transformation and then stabilization, an intervalwise regulator problem is suggested whose optimal control laws incorporate the intervalwise predictor as an integral part and also at least pointwise stabilize the delay systems. Since the above mentioned methods render the periodic feedback gains for time invariant systems the pointwise predictor and regulator are introduced in order to obtain the constant feedback gains, with additional stability properties. The control laws given in this paper are perhaps simplest and easiest to implement.

  • PDF

Passivity Bilateral Teleoperatio System with Time Delay (시간 지연을 가지는 수동성 양방향 텔레오퍼레이션 시스템)

  • Zhang, Changlei;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.333-335
    • /
    • 2006
  • This paper presents a force-reflecting teleoperation scheme with time delay. In reciprocal systems, to improve the stability and performance of the tleleoperation system, the network provides a wide bandwidth, no congestion. However, as use of Internet increases, congestion situation of network increased and transmission time and packet loss increased accordingly. This can make system unstable at remote control. In this paper, we present a passive control scheme for a force reflecting bilateral teleoperation system via the Internet and we investigated how a varying time delay affects the stability of a teleoperation system. A new approach based on a passive control scheme was designed for the system. The simulation results and the tracking performance of the implemented system are presented in this paper.

  • PDF