• Title/Summary/Keyword: time-optimal control problem

Search Result 410, Processing Time 0.024 seconds

A on-line learning algorithm for recurrent neural networks using variational method (변분법을 이용한 재귀신경망의 온라인 학습)

  • Oh, Oh, Won-Geun;Suh, Suh, Byung-Suhl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 1996
  • In this paper we suggest a general purpose RNN training algorithm which is derived on the optimal control concepts and variational methods. First, learning is regared as an optimal control problem, then using the variational methods we obtain optimal weights which are given by a two-point boundary-value problem. Finally, the modified gradient descent algorithm is applied to RNN for on-line training. This algorithm is intended to be used on learning complex dynamic mappings between time varing I/O data. It is useful for nonlinear control, identification, and signal processing application of RNN because its storage requirement is not high and on-line learning is possible. Simulation results for a nonlinear plant identification are illustrated.

  • PDF

Study on an optimum solution for discrete optimal $H_{\infty}$-control problem (이산 최적 $H_{\infty}$-제어 문제의 최적해를 구하는 방법에 대한 연구)

  • 하철근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.565-568
    • /
    • 1996
  • In this paper, a solution method is proposed to calculate the optimum solution to discrete optimal H$_{.inf}$ control problem for feedback of linear time-invariant system states and disturbance variable. From the results of this study, condition of existence and uniqueness of its solution is that transfer matrix of controlled variable to input variable is left invertible and has no invariant zeros on the unit circle of the z-domain as well as extra geometric conditions given in this paper. Through a numerical example, the noniterative solution method proposed in this paper is illustrated.

  • PDF

Optimal Learning Control Combined with Quality Inferential Control for Batch and Semi-batch Processes

  • Chin, In-Sik;Lee, Kwang-Soon;Park, Jinhoon;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.57-60
    • /
    • 1999
  • An optimal control technique designed for simultaneous tracking and quality control for batch processes. The proposed technique is designed by transforming quadratic-criterion based iterative learning control(Q-ILC) into linear quadratic control problem. For real-time quality inferential control, the quality is modeled by linear combination of control input around target qualify and then the relationship between quality and control input can be transformed into time-varying linear state space model. With this state space model, the real-time quality inferential control can be incorporated to LQ control Problem. As a consequence, both the quality variable as well as other controlled variables can progressively reduce their control error as the batch number increases while rejecting real-time disturbances, and finally reach the best achievable states dictated by a quadratic criterion even in case that there is significant model error Also the computational burden is much reduced since the most computation is calculated in off-line. The Proposed control technique is applied to a semi-batch reactor model where series-parallelreactions take place.

  • PDF

Optimal Active Seismic Control of Structures with Optimum Location of Active Controllers (제어기의 최적위치선정을 고려한 구조물의 최적 능동지진제어)

  • Cho, Chang-Geun;Kwon, Joon-Myoung;Park, Tae-Hoon;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.179-189
    • /
    • 2008
  • The object of this study is to develope a program with proposed numerical techniques for an optimal seismic control of structures using active tendon systems. Ricatti closed-loop algorithm has been applied to control the active tendon systems with time-delay problem. The optimal control is formulated as an optimization problem which is finding optimal weighting matrices by minimizing the quadratic performance index by SUMT. In order to find the optimal location of active tendons in structures, controllability index has been introduced. From numerical examples, the current optimal control technique with optimal location of tendons was suitable to control the seismic response of structures.

Design and Stability Test of a HDD Hybrid Controller Using Sliding-Mode Control (슬라이딩 모드 제어를 이용한 HDD 하이브리드 제어기 설계 및 안정성 평가)

  • Byun Ji-Young;Kwak Sung-Woo;You Kwan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.671-677
    • /
    • 2004
  • This paper presents the design of a now controller for the read/write head of a hard disk drive. The general controller for seeking is the time-optimal control. However if we use only the time optimal control law, this could be vulnerable to chattering effect. To solve this problem, we propose a modified controller design algorithm in this paper. The proposed controller consists of bang-bang control for seeking and sliding-mode control for tracking. Moreover, to test the robustness and stability of control system, a bounded disturbance is selected to maximize a severity index. Simulation results show the superiority of the proposed controller through comparison with time optimal VSC(variable structure control).

Optimal Control of Speed Regulating Systems (속도제어를 대상으로 하는 계통의 최적제어)

  • 양흥석;이종호
    • 전기의세계
    • /
    • v.28 no.2
    • /
    • pp.55-60
    • /
    • 1979
  • In this paper, a new method of the optimal control of the regulator and tracking control problem concerning the dimension of the velocity is derived and applied for the second order plant. The output position, output velocity and the control effort are plottcd with time applying analog computer simulation. And it is compared with the output of the ordinary optimal control law in case the reference input is given by velocity function, and studied about the gain of this method.

  • PDF

A Planar Geodesic Constrained On the Maximum Curvature and with Prescribed Initial and Terminal Directions: An Optimal Control Approach

  • Lim, Jong-In;Chung, Ee-Suk;Ree, Sang-Bok;Oh, Hyung-Sik;Chung, Sung-Jin;Kang, Suk-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.105-114
    • /
    • 1993
  • In this article, a planar geodesic (2-dimensional minimum length curve between two points) on which the maximum curvature is constrained and with prescribed initial and terminal directions is studied. A generic problem is formulated by the minimum-time optimal control problem in free terminal time. It is shown that the optimal path ($G^2$) may contain a singular arc or not and that the general types of $G^2$ can he classified into the 3 classes of control sequences. Finally, the explicit form of $G^2$ is derived geometrically as well as algebraically form the main theorem of this article.

  • PDF

The Application of Optimal Control Through Fiscal Policy on Indonesian Economy

  • SYAHRINI, Intan;MASBAR, Raja;ALIASUDDIN, Aliasuddin;MUNZIR, Said;HAZMI, Yusri
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.741-750
    • /
    • 2021
  • The budget deficit is closely related to expansionary fiscal policy as a fiscal instrument to encourage economic growth. This study aims to apply optimal control theory in the Keynesian macroeconomic model for the economy, so that optimal growth can be found. Macroeconomic variables include GDP, consumption, investment, exports, imports, and budget deficit as control variables. This study uses secondary data in the form of time series, the time period 1990 to 2018. Performing optimal control will result in optimal fiscal policy. The optimal determination is done through simulation, for the period 2019-2023. The discrete optimal control problem is to minimize the objective function in the form of a quadratic function against the deviation of the state variable and control variable from the target value and the optimal value. Meanwhile, the constraint is Keynes' macroeconomic model. The results showed that the optimal value of macroeconomic variables has a deviation from the target values consisting of: consumption, investment, exports, imports, GDP, and budget deficit. The largest deviation from the average during the simulation occurs in GDP, followed by investment, exports, and the budget deficit. Meanwhile, the lowest average deviation is found in imports.

On-line Trajectory Optimization Based on Automatic Time Warping (자동 타임 워핑에 기반한 온라인 궤적 최적화)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.

Optimal Tuning of Biaxial Servomechanisms Using a Cross-coupled Controller (상호결합제어기를 이용한 2축 서보메커니즘의 최적튜닝)

  • Bae Ho-Kyu;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1209-1218
    • /
    • 2006
  • Precision servomechanisms are widely used in machine tool, semiconductor and flat panel display industries. It is important to improve contouring accuracy in high-precision servomechanisms. In order to improve the contouring accuracy, cross-coupled control systems have been proposed. However, it is very difficult to select the controller parameters because cross-coupled control systems are multivariable, nonlinear and time-varying systems. In this paper, in order to improve contouring accuracy of a biaxial servomechanism, a cross-coupled controller is adopted and an optimal tuning procedure based on an integrated design concept is proposed. Strict mathematical modeling and identification process of a servomechanism are performed. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servomechanism. The objective of the optimal tuning procedure is to minimize both the contour error and the settling time while satisfying constraints such as the relative stability and maximum overshoot conditions, etc. The effectiveness of the proposed optimal tuning procedure is verified through experiments.