• Title/Summary/Keyword: time-frequency analysis methods

Search Result 956, Processing Time 0.031 seconds

지진관측자료의 효과적인 활용에 관한 고찰 (Best Use of the Measured Earthquake Data)

  • 연관희;박동희;김성주;최원학;장천중
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

웨이브렛의 주파수-시간 평면 해석에 관한 연구 (A Study on Frequency-Time Plane Analysis of Wavelet)

  • 배상범;류지구;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.451-454
    • /
    • 2005
  • 현재, 신호를 해석하기 위한 많은 방법들이 제시되고 있으며, 대표적인 방법으로는 퓨리에 변환과 웨이브렛 변환이 있다. 이러한 방법들에서, 퓨리에 변환은 모든 주파수 범위에 대해 cosine과 sine 파형의 조합으로써 신호를 표현하지만, 신호 내에서 특정 주파수 성분이 발생한 시간정보를 제공하지 않으며, 분석 신호의 전체적인 특징만을 나타낸다. 따라서 이러한 한계를 극복하기 위해, 다중해상도 해석이 가능한 웨이브렛 변환이 음성과 영상처리, 컴퓨터 비전 등의 광범위한 분야에서 응용되고 있다. 그리고 웨이브렛 변환은 스케일 변수에 따라 변화하는 윈도우를 사용하여 시간-주파수 국부성을 나타낸다. 본 논문에서는 cosine과 sine 형태의 웨이브렛을 사용하여, 퓨리에 변환의 새로운 접근법을 제시하였으며, 주파수-시간 평면의 유한한 지점에서 신호의 특징을 분석하였다.

  • PDF

시간-주파수 분석을 이용한 고속철도차량 윤축에서 발생하는 소음과 진동의 동적 특성 (Dynamic Characteristics of the Noise and Vibration of High-speed Train's Wheelset using Time-varying Frequency Analysis)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회논문집
    • /
    • 제12권4호
    • /
    • pp.465-471
    • /
    • 2009
  • 본 논분에서는 보다 적은 실험으로 고속철도차량의 윤축에서 발생하는 소음과 진동의 동적 특성을 알기 위해 불규칙 신호처리와 시간-주파수 해석을 이용하여 분석하였다. 윤축의 소음과 진동은 대부분 차륜과 궤도의 비정상상호작용이 원인이다. 이를 분석하기 위해 마이크로폰과 가속도계를 이용하여 데이터를 수집하고 붙규칙 신호처리와 시간-주파수 분석을 이용하여 분석하였다. 분석한 결과, 이 방법들은 고속철도차량의 윤축에서 발생하는 소음과 진동의 동적특성을 분석하는데 유용함을 확인하였다.

재표본 방법론을 활용한 베이지안 주파수 추정 (Bayesian estimation for frequency using resampling methods)

  • 박노진
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.877-888
    • /
    • 2017
  • 시계열 자료의 주기를 파악하기 위해 스펙트럴 분석이 널리 이용되고 있다. 전력 스펙트럼이나 피리오도그램을 통해서 주파수를 추정하고 그로부터 순환 주기를 계산한다. 한편에서는 통계학의 한 축인 베이지안 기법을 활용한 주파수 추정법이 연구되어 사용되고 있다. 그런데 베이지안 주파수 추정량이 수학 공식을 통해 분석적으로 표현이 가능하지 않음으로 인해 신뢰구간 추정 같은 심도 깊은 통계학적 분석이 용이하지 않은 상화에서 컴퓨터를 이용한 수치해석적인 방법으로 신뢰구간을 추정하였다. 본 논문에서는 베이지안 주파수에 대한 보다 심도 있는 분석을 위해 모수를 재표본하는 Markov chain Monte Carlo (MCMC)을 이용한 추정과 데이터를 재표본하는 시계열 재표본을 통한 추정을 시도해 보았다. 예제로서 부동산 매매/전세 가격 지수 데이터을 사용하였고 매매와 전세 가격 지수간에 3.7개월 정도의 주기 차이가 존재하나 통계학적으로는 유의미한 차이라고 할 수 없음을 알았다.

Estimating peak wind load effects in guyed masts

  • Sparling, B.F.;Wegner, L.D.
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.347-366
    • /
    • 2007
  • Guyed masts subjected to turbulent winds exhibit complex vibrations featuring many vibration modes, each of which contributes to various structural responses in differing degrees. This dynamic behaviour is further complicated by nonlinear guy cable properties. While previous studies have indicated that conventional frequency domain methods can reliably reproduce load effects within the mast, the system linearization required to perform such an analysis makes it difficult to relate these results directly to corresponding guy forces. As a result, the estimation of peak load effects arising jointly from the structural action of the mast and guys, such as leg loads produced as a result of guy reactions and mast bending moments, is uncertain. A numerical study was therefore undertaken to study peak load effects in a 295 m tall guyed mast acted on by simulated turbulent wind. Responses calculated explicitly from nonlinear time domain finite element analyses were compared with approximate methods in the frequency domain for estimating peak values of selected responses, including guy tension, mast axial loads and mast leg loads. It was found that these peak dynamic load effects could be accurately estimated from frequency domain analysis results by employing simple, slightly conservative assumptions regarding the correlation of related effects.

연안해역의 기상${\cdot}$파랑관측망 설계 및 해석기술의 구축 - 해양파랑관측자료의 해석방법 - (Desing and Analysis of Weather/Wave Observation Network for the Coastal Zone)

  • 류청로;김희준;손병규
    • 한국수산과학회지
    • /
    • 제30권1호
    • /
    • pp.16-30
    • /
    • 1997
  • Application of digital filter to the wave analysis is studied using the observed data by wave gauge. Sea wave data obtained from wave gauge always include long wave frequency components. In order to estimate the sea wave parameters, we must re-analyzed wave data by using a digital filter and the concept of mean sea level correction method. By the wave by wave analysis and spectral methods, sea wave parameters on the basis of wave data obtained by the conventional method and digital filter are compared. The best-fitted design filter determined by the necessary conditions of frequency responses, can be obtained by calculating various transfer functions. Thus, to get the best the digital filter design, both Butterworth filter and Savitzky-Golay filter of digital filter are used in the frequency and time domain, respectively. Three cases of observation wave data are calculated by applying digital filter. The components of different frequency bands in the surf zone are coexisted in three cases. The wave data for wind wave components is computed using the digital filter the surf zone and off-surf zone, and based on the filtered data, wave parameters are calculated by the spectral analysis and wave by wave analysis methods, respectively. As a results, when sea wave data observed by wave gauge are analyzed, the Savitzky-Golay method is recommended which can well appear cut-off frequency by experimental choosing filter length in the time domain. The better mean sea level correction method is the Butterworth filter in the frequency domain.

  • PDF

동특성 추정을 이용한 구조물의 손상도 추정 (Damage Estimation of Structures Incorporating Structural Identification)

  • Yun, Chung-Bang;Lee, Hyeong-Jin;Kim, Doo-Ki
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.136-143
    • /
    • 1995
  • The problem of the structural identification becomes important, particularly with relation to the rapid increase of the number of the damaged or deteriorated structures, such as highway bridges, buildings, and industrial facilities. This paper summarizes the recent studies related to those problems by the present authors. The system identfication methods are generally classified as the time domain and the frequency domain methods. As time doamin methods, the sequential algorithms such as the extended Kalman filter and the sequential prediction error method are studied. Several techniques for improving the convergences are incorporated. As frequency domain methods, a new frequency response function estimator is introduced. For damage estimation of existing structures, the modal perturbation and the sensitivity matrix methods are studied. From the example analysis, it has been found that the combined utilization of the measurement data for the static response and the dynamic (modal) properties are very effictive for the damage estimation.

  • PDF

심박변이에 대한 평가방법 (Assessing Methods of Heart Rate Variability)

  • 박기종;정희정
    • Annals of Clinical Neurophysiology
    • /
    • 제16권2호
    • /
    • pp.49-54
    • /
    • 2014
  • Heart rate variability is significantly associated with cardiovascular complications in various neurological disorders with cardiac impairment. Measures of spontaneous heart rate variability might be different from provocating tests of heart rate variability such as deep breathing and Valsava maneuver. Methods for analysis are divided into time domain methods and frequency domain methods. There are standard deviation of NN interval, standard deviation of average NN interval, root mean square of the successive differences, NN50, and pNN50 in time domain methods. Frequency domain bands can be divided into very low, low, and high frequency. Each variables are influenced by sympathetic and/or parasympathetic activity.

고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석 (Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal)

  • 김현수;남기우;강창룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

광역계통의 실시간해석을 위한 고속 저주파수 파라미터 추정 (Fast Estimation of Low Frequency Parameter for Real-Time Analysis in Wide Area Systems)

  • 김은주;심관식;김용구;김의선;남해곤;임영철
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1078-1086
    • /
    • 2009
  • This paper presents a Fourier based algorithm for estimating the parameters of the low frequency oscillating modes. The proposed methods estimates various parameters(frequency, damping factor, mode magnitude, phase) by fitting Fourier spectrum and phase with a damped exponential cosine function. Dominant frequency is selected by taking frequency corresponding to the peak spectrum, and damping factor is estimated using the left/right spectra of Fourier spectrum. In addition, mode magnitude is calculated by the normalized peak spectrum, and phase is estimated from spectrum phase. Also, we introduce an accuracy index in order to determine the accuracy of the estimated parameters, and the index is calculated using the deviations of the peak spectrum and the left/right spectra. The parameter estimation methods proposed in this paper include very simple arithmetical processes, so the algorithms are simple and the calculation speed is very fast. The proposed methods are applied to test functions with two dominant modes. The results show that the proposed methods are highly applicable to low frequency parameter estimation.