• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.03 seconds

Reducing Electromagnetic Radiation in Split Power Distribution Network of High-Speed Digital System

  • Shim, Hwang-Yoon;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.340-343
    • /
    • 2002
  • Electromagnetic(EM) radiation problems and their possible solutions are addressed in this paper for the split power plane of high-speed digital systems. Stitching and decoupling capacitors are proved to be very effective fur reducing signal noise, ground bounce as well as electromagnetic radiation from the split power plane. Simulations based on 3D-Finite Difference Time Domain (FDTD) method are utilized for the analysis of practical high frequency multi-layered PC main board

  • PDF

Sensor selection approach for damage identification based on response sensitivity

  • Wang, Juan;Yang, Qing-Shan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.53-68
    • /
    • 2017
  • The response sensitivity method in time domain has been applied extensively for damage identification. In this paper, the relationship between the error of damage identification and the sensitivity matrix is investigated through perturbation analysis. An index is defined according to the perturbation amplify effect and an optimal sensor placement method is proposed based on the minimization of that index. A sequential sub-optimal algorithm is presented which results in consistently good location selection. Numerical simulations with a two-dimensional high truss structure are conducted to validate the proposed method. Results reveal that the damage identification using the optimal sensor placement determined by the proposed method can identify multiple damages of the structure more accurately.

Accurate Measurement of THz Dielectric Constant Using Metamaterials on a Quartz Substrate

  • Park, Sae June;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.637-641
    • /
    • 2017
  • We present dielectric constant measurements of thin films using THz metamaterials fabricated on a quartz substrate. The resonance shifts of the metamaterials exhibit saturation behavior with increasing film thickness. The saturation frequency shift varies with the real part of the dielectric constant, from which the numerical expression for the particular metamaterial design was extracted. We first performed finite-difference time-domain simulations to find an explicit relationship between the saturated frequency shift and the dielectric constant of a thin film, which was confirmed by the experimental results from conventional techniques. In particular, the quartz substrate enables us to determine their values more accurately, because of its low substrate index. As a result, we extracted the dielectric constants of various films whose values have not been addressed previously without precise control of the film thickness.

Blind Signal Separation Method using Hough Transform (Hough 변환을 이용한 암묵신호분리방법)

  • Lee, Haeng Woo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2014
  • This paper is on the blind signal separation(BSS) method by the geometric method. To separate the signal sources, we use Hough transform and BSS. Hough transform is a geometric method which let us know the local informations of the signal. We find the orientations of signals by Hough transform and know the number of signal sources. When the number of sensors is more than the number of sources. the BSS algorithm can separate the mixtures well in the time domain. This algorithm has a good performance in converging fast. We had checked up the quality of the algorithm after separating the mixed signals. The results of simulations show that this BSS method has the abnormal waveforms due to unconverging coefficients in the beginning, and stably has the separated waveforms which almost equal to the sources in the most period.

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

Comparison of 12/8 and 6/4 Switched Reluctance Motor : Noise and Vibration Aspects (12/8과 6/4 스위치드 릴럭턴스 모터의 비교 : 노이즈 및 진동)

  • Choi, Da-Woon;Li, Jian;Son, Dong-Hyuk;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.850-851
    • /
    • 2008
  • This paper compares and investigates the vibration and noise characteristics through simulations of 12/8 and 6/4 switched reluctance motors (SRMs). The radial force which is the main source of vibration is computed from two-dimensional(2D) transient magnetic finite element analysis (FEA) and compared in both time and frequency domain. At the same output power, the radial force of 6/4 SRM is found to be more than two times as that one of 12/8 SRM. Three-dimensional structural finite-element analysis (3D FEA) is used to study the mechanical characteristics. It can be concluded from static structural analysis that the maximum total deformation could be reduced to 1/26 if the motor is designed with 12/8 structure instead of 6/4. The dominant vibration modes are verified by modal analysis.

  • PDF

A Study on High Resolution Ranging Algorithm for The UWB Indoor Channel

  • Lee, Chong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.96-103
    • /
    • 2007
  • In this paper, we present a novel and numerically efficient algorithm for high resolution TOA(Time Of Arrival) estimation under indoor radio propagation channels. The proposed algorithm is not dependent on the structure of receivers, i.e, it can be used with either coherent or non-coherent receivers. The TOA estimation algorithm is based on a high resolution frequency estimation algorithm of Minimum-norm. The efficiency of the proposed algorithm relies on numerical analysis techniques in computing signal or noise subspaces. The algorithm is based on the two step procedures, one for transforming input data to frequency domain data and the other for estimating the unknown TOA using the proposed efficient algorithm. The efficiency in number of operations over other algorithms is presented. The performance of the proposed algorithm is investigated by means of computer simulations.. Throughout the analytic and computer simulation results, we show that the proposed algorithm exhibits superior performance in estimating TOA estimation with limited computational cost.

BB-BC optimization algorithm for structural damage detection using measured acceleration responses

  • Huang, J.L.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • This study presents the Big Bang and Big Crunch (BB-BC) optimization algorithm for detection of structure damage in large severity. Local damage is represented by a perturbation in the elemental stiffness parameter of the structural finite element model. A nonlinear objective function is established by minimizing the discrepancies between the measured and calculated acceleration responses (AR) of the structure. The BB-BC algorithm is utilized to solve the objective function, which can localize the damage position and obtain the severity of the damage efficiently. Numerical simulations have been conducted to identify both single and multiple structural damages for beam, plate and European Space Agency Structures. The present approach gives accurate identification results with artificial measurement noise.

Photo-sensing Characteristics of VO2 Nanowires

  • Sohn, Ahrum;Kim, Eunah;Kim, Haeri;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.197.1-197.1
    • /
    • 2014
  • VO2 has intensively investigated for several decades due to its interesting physical properties, including metal-insulator transition (MIT), thermochromic and thermoelectric properties, near the room temperature. And also gas and photo sensing properties of VO2 nanowires have attracted increasing research interest due to the high sensitivity and multi-sensing capability. We studied the light-induced resistance change of VO2 nanowires. In particular, we have investigated plasmonic enhancement of the photo-sensing properties of the VO2 nanowires. To select proper wavelength, we performed finite-difference time-domain simulations of electric field distribution in the VO2 nanowires attached with Ag nanoparticles. Localized surface plasmon resonance (LSPR) is expected at wavelength of 560 nm. The photo-sensitivity was carefully examined as a function of the sample temperature. In the presentation, we will discuss physical origins of the photo-induced resistance change in VO2.

  • PDF

Advanced Channel Estimation Method for IEEE 802.11p/WAVE System

  • Jang, DongSeon;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.27-35
    • /
    • 2019
  • In this paper, we propose an advanced Minimum Mean Square Error (MMSE) channel estimation method for IEEE 802.11p/Wireless Access in Vehicular Environments (WAVE) systems. To improve the performance of MMSE method, we apply the Weighted Sum using Update Matrix (WSUM) scheme to the step of calculating the instantaneously estimated channel and then, a time domain selectively averaging method is applied after the WSUM scheme. Based on that, the accuracy of instantaneously estimated channel increases and then, the accuracy of auto covariance matrix also increases. Consequently, we can achieve the performance gain over the conventional MMSE method. Through simulations based on the IEEE 802.11p standard, it is confirmed that the proposed scheme can outperform the existing channel estimation schemes.