• Title/Summary/Keyword: time-domain simulations

Search Result 296, Processing Time 0.028 seconds

A note for hybrid Bollinger bands

  • Rhee, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.777-782
    • /
    • 2010
  • We introduce some techniques to decompose the impulse (the unit sample) into several dilated pieces in the discrete time domain. From the decomposition of the impulse, we obtain localized moving averages. Thus we construct hybrid Bollinger bands that may give various strategies for stock traders. By simulations, we report that more than 94% of stock prices of companies in KOSPI 200 are inside this hybrid Bollinger band.

Clock Recovery Method for DWMT VDSL (DWMT VDSL을 위한 클럭 복원방식)

  • 문인수;정항근
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.81-85
    • /
    • 1999
  • DWMT VDSL system needs A/D converter clock, bit clock, symbol clock, frame clock, etc. DMT ADSL system utilizes a correlation method which makes use of cyclic prefix or preamble pattern for clock recovery. But the correlation method is difficult to apply to the DWMT system because modulated symbols are overlapped in the time domain. This paper proposes a novel clock recovery method which can be used for the DWMT system due to its inherent independence of the modulation method. This new method is verified by SPICE simulations.

  • PDF

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

Review of Data-Driven Multivariate and Multiscale Methods

  • Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • In this paper, time-frequency analysis algorithms, empirical mode decomposition and local mean decomposition, are reviewed and their applications to nonlinear and nonstationary real-world data are discussed. In addition, their generic extensions to complex domain are addressed for the analysis of multichannel data. Simulations of these algorithms on synthetic data illustrate the fundamental structure of the algorithms and how they are designed for the analysis of nonlinear and nonstationary data. Applications of the complex version of the algorithms to the synthetic data also demonstrate the benefit of the algorithms for the accurate frequency decomposition of multichannel data.

Analysis on the Excessive Vibration of the KTX Tail Cars (KTX 후미차량의 과다 진동해석)

  • Chang Jong-Ki;Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.740-746
    • /
    • 2003
  • In winter season the driving test of the KTX showed the excessive vibration in the tail cars. In this paper, the measured KTX vibration data during test run is analyzed in time and frequency domain. And the numerical simulations using ANSYS and ADAMS are done on the basis of the experimental observations. The results show that 0.6Hz of the tail car motion is due to the natural mode of car combination of the KTX.

  • PDF

A Finite Element Based PML Method for Time-domain Electromagnetic Wave Propagation Analysis (시간영역 전자기파 전파해석을 위한 유한요소기반 PML 기법)

  • Yi, Sang-Ri;Kim, Boyoung;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • This paper presents a new formulation for transient simulations of microwave propagation in heterogeneous unbounded domains. In particular, perfectly-matched-layers(PMLs) are introduced to allow for wave absorption at artificial boundaries used to truncate the infinite extent of the physical domains. The development of the electromagnetic PML targets the application to engineering mechanics problems such as structural health monitoring and inverse medium problems. To formulate the PML for plane electromagnetic waves, a complex coordinate transformation is introduced to Maxwell's equations in the frequency-domain. Then the PML-endowed partial differential equations(PDEs) for transient electromagnetic waves are recovered by the application of the inverse Fourier transform to the frequency-domain equations. A mixed finite element method is employed to solve the time-domain PDEs for electric and magnetic fields in the PML-truncated domain. Numerical results are presented for plane microwaves propagating through concrete structures, and the accuracy of solutions is investigated by a series of error analyses.

Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

  • Crivellini, Andrea;Nigro, Alessandra;Colombo, Alessandro;Ghidoni, Antonio;Noventa, Gianmaria;Cimarelli, Andrea;Corsini, Roberto
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).

A study on the power system stabilizer using discrete-time adaptive sliding mode control (이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구)

  • Park, Young-Moon;Kim, Wook
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF

Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity

  • Kim, Yoon-Ho;Kwon, Soon-Hong;Ee, Ho-Seok;Hwang, Yongsop;No, You-Shin;Park, Hong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.188-191
    • /
    • 2016
  • We investigated surface-roughness-dependent optical loss in a plasmonic cavity consisting of a semiconductor nanodisk/silver nanopan structure. Numerical simulations show that the quality factors of plasmonic resonant modes significantly depend on the surface roughness of the dielectric-metal interface in the cavity structure. In the transverse-magnetic-like whispering-gallery plasmonic mode excited in a structure with disk diameter of 1000 nm, the total quality factor decreased from 260 to 130 with increasing root-mean-square (rms) surface roughness from 0 to 5 nm. This quantitative theoretical study shows that the smooth metal surface plays a critical role in high-performance plasmonic devices.

Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications (고속 LVDS 응용을 위한 전송 접속 경로의 분석 및 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.761-764
    • /
    • 2007
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and πace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects.

  • PDF