• Title/Summary/Keyword: time-dependent problems

Search Result 289, Processing Time 0.027 seconds

Determining chlorine injection intensity in water distribution networks: a comparison of backtracking and water age approaches

  • Flavia D. Frederick;Malvin S. Marlim;Doosun Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.170-170
    • /
    • 2023
  • Providing safe and readily available water is vital to maintain public health. One of the most prevalent methods to prevent the spread of waterborne diseases is applying chlorine injection to the treated water before distribution. During the water transmission and distribution, the chlorine will experience a reduction, which can imply potential risks for human health if it falls below the minimum threshold. The ability to determine the appropriate initial intensity of chlorine at the source would be significant to prevent such problems. This study proposes two methods that integrate hydraulic and water quality modeling to determine the suitable intensity of chlorine to be injected into the source water to maintain the minimum chlorine concentration (e.g., 0.2 mg/l) at each demand node. The water quality modeling employs the first-order decay to estimate the rate of chlorine reduction in the water. The first method utilizes a backtracking algorithm to trace the path of water from the demand node to the source during each time step, which helps to accurately determine the travel time through each pipe and node and facilitate the computation of time-dependent chlorine decay in the water delivery process. However, as a backtracking algorithm is computationally intensive, this study also explores an alternative approach using a water age. This approach estimates the elapsed time of water delivery from the source to the demand node and calculate the time-dependent reduction of chlorine in the water. Finally, this study compares the outcomes of two approaches and determines the suitable and effective method for calculating the chlorine intensity at the source to maintain the minimum chlorine level at demand nodes.

  • PDF

Analysis of EM Penetration Problems in Complex Structures Using Finite-Difference Time-Domain Method (FDTD 방법을 이용한 복잡한 구조물에서의 전자파 침투 특성 해석)

  • 김병남;채찬병;박성욱;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.68-75
    • /
    • 2000
  • In this paper, we analyzed the radiation patterns of a monopole antenna mounted on cylinder and EM penetration problems in the complex structures by using FDTD method associated with 3-D PML absorbing boundary condition. In order to validate the proposed FDTD code, the radiation patterns of monopole antenna mounted on cylinders were compared with the exact Carter's solutions. As a results, the predicted radiation pattern exhibited excellent agreement with exact solution. And the FDTD code is applied to analyze the EM penetration problems in complex structures, Blackhawk helicopter. As the plane wave is excited, a significant amount of energy penetrates the helicopter structure, and it is dependent on aperture/airframe interface.

  • PDF

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

Development of Real-Time Decision Support System for the Efficient Berth Operation of Inchon Port (인천항의 효율적 선석운영을 위한 실시간 의사결정지원시스템 구축)

  • 유재성;김동희;김봉선;이창호
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.189-198
    • /
    • 1999
  • The purpose of this paper is to develop a knowledge-based real-time decision support system to support decision makers for efficient berth operation of Inchon Port. In these days the berth operation problems have been many studied. The berth operation rules differ from port to port and the problem is highly dependent on natural geographical and operational environment of port. In Inchon Port the ship’s entrance into port and departure from port is extremely affected status of dock. In this paper we analyzed some effects of dock a specific character of Inchon Port with a real data of ship’s in Inchon Port. And reconstruct a previous expert’s knowledge of berth allocating problem in Inchon Port. Also the mechanism for the efficient berth operation has been studied by repeatedly dispatching in order to obtain a best effect of berth allocation, with real-time updated information for delay at service time of a specific berth and changing of a working-berth. The system is developed with graphic user interface(GUI) concept using user interactive approach. And this system will be provide decision support maker with an efficient and fast way to berth allocating and reduce wastes of time space and manpower in Inchon Port operation.

  • PDF

HMM-Based Transient Identification in Dynamic Process

  • Kwon, Kee-Choon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 2000
  • In this paper, a transient identification based on a Hidden Markov Model (HMM) has been suggested and evaluated experimentally for the classification of transients in the dynamic process. The transient can be identified by its unique time dependent patterns related to the principal variables. The HMM, a double stochastic process, can be applied to transient identification which is a spatial and temporal classification problem under a statistical pattern recognition framework. The HMM is created for each transient from a set of training data by the maximum-likelihood estimation method. The transient identification is determined by calculating which model has the highest probability for the given test data. Several experimental tests have been performed with normalization methods, clustering algorithms, and a number of states in HMM. Several experimental tests have been performed including superimposing random noise, adding systematic error, and untrained transients. The proposed real-time transient identification system has many advantages, however, there are still a lot of problems that should be solved to apply to a real dynamic process. Further efforts are being made to improve the system performance and robustness to demonstrate reliability and accuracy to the required level.

  • PDF

Verification of a hybrid control approach for spacecraft attitude stabilization through hardware-in-the-loop simulation

  • Kim, Sung-Woo;Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.32.2-32.2
    • /
    • 2011
  • State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.

  • PDF

A Study on Constructing Approach of Enterprise Document Management Architecture in Semiconductor Business (반도체 산업에서의 Enterprise Document Management Architecture 구현에 관한 연구)

  • 장현성;이영중;송하석;한영준;안정삼
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.11-14
    • /
    • 2001
  • A systematic construction and re-use of technology related to the product development and production has been the most important for the semiconductor industry dependent on process and equipment. Therefore, numerous outputs in the form of paper has been produced in the process of information management ranging from the creation to recycling and disposal of technologies. In this research, the technology and documents necessary for the business management in the field of semiconductor manufacturing were classified in an effort to solve problems while the modeling of document management architecture at the enterprise level was performed by properly setting up the security system to prevent the unauthorized disclosure of the product development technology to the third parties. Especially, the product and process specification are designed in such a way as to ensure a real-time response in interface with the production system in order to shorten the development lead-time and improve the productivity. This paper is to discuss the modeling approach, the strategy to construct the system and its results.

  • PDF

Transient Power Flow Analysis of Beam and Plate (과도 입력파워에 대한 보와 평판의 파워흐름해석)

  • Hwang, Dae-Woong;Seo, Seong-Hoon;Kwon, Hyun-Wung;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.624-631
    • /
    • 2007
  • PFA (power flow analysis) has been recognized as a useful method in vibration analysis of medium-to-high frequency ranges. Until now, PFA method has been developed for steady-state vibration problems. In this paper, PFA method has been expanded to transient problem. New energy governing equations are derived considering time dependent terms in beam and plate. Analytic solutions of those equations are found in simple beam and plate, and are verified by comparing with modal solutions.

Acquisition and Refinement of State Dependent FMS Scheduling Knowledge Using Neural Network and Inductive Learning (인공신경망과 귀납학습을 이용한 상태 의존적 유연생산시스템 스케쥴링 지식의 획득과 정제)

  • 김창욱;민형식;이영해
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.69-83
    • /
    • 1996
  • The objective of this research is to develop a knowledge acquisition and refinement method for a multi-objective and multi-decision FMS scheduling problem. A competitive neural network and an inductive learning algorithm are integrated to extract and refine necessary scheduling knowledge from simulation outputs. The obtained scheduling knowledge can assist the FMS operator in real-time to decide multiple decisions simultaneously, while maximally meeting multiple objective desired by the FMS operator. The acquired scheduling knowledge for an FMS scheduling problem is tested by comparing the desired and the simulated values of the multiple objectives. The result show that the knowledge acquisition and refinement method is effective for the multi-objective and multi-decision FMS scheduling problems.

  • PDF

An Optimal Pricing and Inventory control for a Commodity with Price and Sales-period Dependent Demand Pattern

  • Sung, Chang-Sup;Yang, Kyung-Mi;Park, Sun-Hoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.904-913
    • /
    • 2005
  • This paper deals with an integrated problem of inventory control and dynamic pricing strategies for a commodity with price and sales-period dependent demand pattern, where a seller and customers have complete information of each other. The problem consists of two parts; one is each buyer's benefit problem which makes the best decision on price and time for buyer to purchase items, and the other one is a seller's profit problem which decides an optimal sales strategy concerned with inventory control and discount schedule. The seller's profit function consists of sales revenue and inventory holding cost functions. The two parts are closely related into each other with some related variables, so that any existing general solution methods can not be applied. Therefore, a simplified model with single seller and two customers in considered first, where demand for multiple units is allowed to each customer within a time limit. Therewith, the model is generalized for a n-customer-classes problem. To solve the proposed n-customer-set problem, a dynamic programming algorithm is derived. In the proposed dynamic programming algorithm, an intermediate profit function is used, which is computed in case of a fixed initial inventory level and then adjusted in searching for an optimal inventory level. This leads to an optimal sales strategy for a seller, which can derive an optimal decision on both an initial inventory level and a discount schedule, in $O(n^2)$ time. This result can be used for some extended problems with a small customer set and a short selling period, including sales strategy for department stores, Dutch auction for items with heavy holding cost, open tender of materials, quantity-limited sales, and cooperative buying in the on/off markets.

  • PDF