• Title/Summary/Keyword: time-dependent coefficients

Search Result 176, Processing Time 0.031 seconds

Optimization of the Conditions of Flavonoid Extraction From Tartary Buckwheat Sprout Using Response Surface Methodology (반응표면분석법을 이용한 타타리메밀싹에서 플라보노이드 추출 최적화)

  • Shin, Jiyoung;Choi, Iseul;Hwang, Jinwoo;Yang, Junho;Lee, Yoonhyeong;Kim, So-i;Cha, Eunji;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1101-1108
    • /
    • 2020
  • Tartary buckwheat is a grain with many flavonoids, such as rutin, quercetin, kaempferol, and myricetin. This study aimed to optimize extraction conditions to maximize the rutin, quercetin, and myricetin contents of tartary buckwheat sprout extracts using response surface methodology. A BoxBehnken design containing 15 experiments was employed to evaluate the effects of extraction conditions, such as temperature (X1, 50~70℃), extraction time (X2, 5~9 hr), and ethanol concentration (X3, 60~90%). The coefficients of determination (R2) for all the dependent variables (extraction temperature, extraction time, and extraction ethanol concentration) were determined to be over 0.95, indicating significance. The p-value of the model in lack of fit was over 0.1 than means, indicating that the model was well predicted. The optimal extraction conditions for rutin, quercetin, and myricetin contents were obtained at X1 = 51.03, X2 = 6.62, and X3 = 69.16, respectively. Under these optimal conditions, the predicted rutin, quercetin, and myricetin contents were 808.467 ㎍/ml, 193.296 ㎍/ml, and 37.360 ㎍/ml, respectively. For the validation of the model, ten experiments were performed and the experimental rutin and quercetin contents were measured at 802.84±8.49 ㎍/ml, 193.76±2.80 ㎍/ml, and 34.84±0.43 ㎍/ml, respectively. The experimental rutin and quercetin contents were similar to the predicted contents, but the experimental myricetin content was lower than predicted.

Optimization of Skim Milk Fermentation Conditions by Response Surface Methodology to Improve ACE Inhibitory Activity Using Lactiplantibacillus plantarum K79 (반응표면법에 의한 Lactiplantibacillus plantarumK79를 이용한 ACE(Angiotensin Converting Enzyme) 억제활성 향상을 위한 탈지유 발효조건 최적화)

  • Park, Yu-Kyoung;Hong, Sang-Pil;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • This study was conducted using response surface methodology (RSM) to elucidate fermentation conditions that will optimize ACE inhibitory activity using Lactiplantibacillus plantarum K79. Four independent variables [skim milk (with 1% added glucose) concentration (6%-14%), incubation temperature (32℃-42℃), incubation time (8-24 h), and amount of added starter (0.02%-0.2%)] were evaluated using five-level central composite design and response surface methodology to determine the optimum fermentation condition. The dependent variables were angiotensin converting enzyme (ACE) inhibitory activity (the value obtained from 102 diluted supernatant), and pH. The respective coefficients of determinations (R2) were 0.791 and 0.905 for ACE inhibitory activity and pH. The maximum ACE inhibitory activity was 90% under the following conditions: 10% skim milk (with 1% added glucose) concentration, 37℃ incubation temperature, 17.8 h incubation time, and 0.2% added starter. Based on the RSM, using predicted best ACE conditions for fermentation of 13.49% skim milk (with 1% added glucose) with 0.0578% starter at 33.4℃ for 21.5 h, the predicted ACE inhibitory activity and pH values were 86.69% and 4.6, respectively. Actual ACE inhibitory activity and pH values were 85.5% and 4.58, respectively

Optimization of Microwave Extraction Conditions for Antioxidant Phenolic Compounds from Ligustrum lucidum Aiton Using Response Surface Methodology (반응표면분석법을 이용한 여정자의 페놀계 항산화 성분에 대한 마이크로웨이브 추출조건 최적화)

  • Yun, Sat-Byul;Lee, Yuri;Lee, Nam Keun;Jeong, Eung-Jeong;Jeong, Yong-Seob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.570-576
    • /
    • 2014
  • Response surface methodology (RSM) was applied to optimize the microwave-assisted extraction (MAE) conditions for electron-donating ability, total phenol content, and total flavonoid content of Ligustrum lucidum Aiton. Ligustrum lucidum Aiton from different regions was tested, and Ligustrum lucidum Aiton from Haenam was chosen due to its higher total phenolic content, total flavonoid content, DPPH radical scavenging activity and ABTS radical scavenging activity compared to the other samples. Central composite design was used to optimize extraction of Ligustrum lucidum Aiton from Haenam as well as determine the effects of extraction temperature ($X_1$) and extraction time ($X_2$) on dependent variables ($Y_n$). Determination coefficients ($R^2$) of the regression equations for dependent variables ranged from 0.8858 to 0.9517. The optimum points were $131.68^{\circ}C$ for extraction temperature and 5.49 min for extraction time. Predicted values of the optimized conditions were acceptable when compared to experimental values.

Optimization of Extraction of Functional Components from Black Rice Bran (흑미 미강의 기능성 성분 추출 공정 최적화)

  • Jo, In-Hee;Choi, Yong-Hee
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.388-397
    • /
    • 2011
  • The purpose of this study was to determine the optimum ethanol extraction conditions for maximum extraction of functional components such as ferulic acid, oryzanol, and toopherol from black rice bran using Response Surface Methodology (RSM). A central composite design was applied to investigate the effects of the independent variables of solvent ratio ($X_{1}$), extraction temperature ($X_{2}$) and extraction time ($X_{3}$) on the dependent variables such as total phenol components ($Y_{1}$), total flavonoids compounds ($Y_{2}$), electron donating ability ($Y_{3}$), $\gamma$-oryzanol ($Y_{4}$), ferulic acid ($Y_{5}$) and $\alpha$-toopherol components ($Y_{6}$). ANOVA results showed that coefficients of determination (R-square) of estimated models for dependent variables ranged from 0.8939 to 0.9470. It was found that solvent ratio and extraction temperature were the main effective factors in this extraction proess. Particularly, the extraction efficiency of ferulic acid, $\gamma$-oryzanol and $\alpha$-toopherol components were significantly affected by extraction temperature. As a result, optimum extraction conditions were 20.35 mL/g of solvent ratio, 79.4$^{\circ}C$ of extraction temperature and 2.88 hr of extraction time. Predicted values at the optimized conditions were acceptable when compared with experimental values.

Estimation of Flowability and Strength in Controlled Low Strength Material Using Multiple Regression Analysis (다중회귀분석을 이용한 CLSM의 유동성 및 강도 특성 예측)

  • Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.65-75
    • /
    • 2017
  • Flowability and strength with curing time of controlled low-strength material (CLSM) are required differently according to the construction purpose. In this paper, the flowability and strength were estimated from the mixing ratio of CLSM using multiple regression analysis to design the CLSM. The flow values and strength at 12 hrs and 7days were measured in accordance with the mixing ratio of CLSM which consists of 7 different materials, such as CSA expansive agent, ordinary Portland cement, fly ash, sand, silt, water, and accelerator. The multiple regression was performed with the proportions of each material of CLSM as independent variables and the measured properties as dependent variables using SPSS Statistics 23 which is a statistical analysis program. The regression coefficients were estimated from the first to third order equation models for the materials. From the results, the third order model for the flow values and the first order models for 12hrs and 7days strength are the most appropriate models. This study suggests that the mixing ratio required for constructions may be effectively estimated from the regression models about the characteristics of CLSM, before performing experimental tests.

Monitoring of antioxidant activities with dried Gugija (Lycium chinensis Mill) extraction (건조 구기자의 추출에 따른 항산화 효능 모니터링)

  • Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.859-865
    • /
    • 2016
  • Thise study aimed to determine the optimum antioxidant extraction conditions of dried Gugija (Lycium chinensis Mill). To determine the operational parameters, including ethanol concentration ($X_1$, 0~80%) and extraction time ($X_2$, 1~5 hr), a response surface methodology was applied to monitor brown color intensity, total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity. Coefficients of determinations ($R^2$) of the models were 0.8486~0.9214 (p<0.05~0.1) in dependent parameters. Brown color intensity of Gugija extracts reached a maximum of 0.75 (OD in 420 nm) under extraction conditions of 2.88 hr in 78.10% ethanol. Total phenolic compounds reached a maximum of $2,355{\mu}g$ under extraction conditions of 4.94 hr in 30.17% ethanol. ABTS radical scavenging activity was 13.83% at 4.61 hr and 16.21% ethanol. $Fe^{2+}$ chelating activity showed a maximum of 58.54% under extraction conditions of 3.39 hr in 0.76% ethanol. Optimum extraction conditions (5 hr extraction in 15% ethanol) were obtained by superimposing the contour maps with regards to total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity of dried Gugija. Maximum values of total phenolic compounds, ABTS radical scavenging activity, and $Fe^{2+}$ chelating activity under optimum extraction condition were $2,397{\mu}g$, 15.62% and 54.78%, respectively.

Quantification of Chloride Diffusivity in Steady State Condition in Concrete with Fly Ash Considering Curing and Crack Effect (재령 및 균열효과를 고려한 플라이애시 콘크리트의 정상상태 염화물 확산 특성의 정량화)

  • Yoon, Yong-Sik;Cheon, Ju-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.109-115
    • /
    • 2019
  • In case of the cracks in concrete, the penetration of deterioration ions such as chloride ions in to cracks is accelerated. According to the penetration of chloride ions, structural and durability problems to RC(Reinforced Concrete) structures are caused. In this study, the accelerated chloride diffusion coefficient which is in steady state is evaluated for 2 year aged normal and high strength FA(Fly Ash) concrete, after a range of crack depths are induced up to 1.0 mm in 56 aged day. Considering crack effect by linear regression analysis, high strength concrete has slightly less increasing ratio of diffusion coefficient by crack than normal strength concrete, and diffusion coefficient increases non-linearly as crack width is increased. Also, In two types of concrete, crack effect decrease as the curing period increase. In the case of quantifying crack and curing effect by using exponential function form, the coefficients of determination are higher than those of linear regression analysis. Under steady state, it is thought that there is not a high correlation between the crack effect and the curing effect, and considering the two independent effects, it is believed that reasonable prediction equation for diffusion of concrete with crack can be proposed.

The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions (해양 폭로 환경에 따른 GGBFS 콘크리트의 겉보기 염화물 확산계수 비교)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • In this study, the time-dependent chloride ingress behavior in GGBFS concrete was evaluated considering marine exposure conditions and the properties of concrete mixtures. The concrete mixture for this study had 3 levels of water to binder ratio and the substitution rate of GGBFS, and outdoor exposure tests were performed considering submerged area, tidal area, and splash area. According to the evaluation results of diffusion coefficient considering properties of concrete mixtures, as the substitution rate of GGBFS increased, the decreasing rate of the diffusion coefficient decreased based on exposure periods of 730 days(2 years). As the evaluation result of the diffusion behavior according to the marine exposure conditions, the diffusion coefficient was evaluated in the order of submerged area, tidal area, and splash area. In tidal area, a relatively high diffusion coefficient was evaluated due to the repetition of wet and dry seawater. In this study, the effects of GGBFS substitution rate on the decreasing behavior of apparent chloride diffusion coefficient was analyzed in consideration of exposure conditions and periods. Linear regression analysis was performed with apparent chloride diffusion coefficient as output value and GGBFS substitution rate as input value. After 730 days of exposure, the effect of GGBFS on diffusion coefficient was significantly reduced. Even for OPC concrete, after 730 days, the diffusion coefficient was as low as that of GGBFS concrete, so the gradient of the regression equation decreased significantly. It is thought that improved durability performance for chloride ingress can be secured before 730 days through the use of GGBFS.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Optimization of Extraction Conditions for Ethanol Extracts from Chrysanthemum morifolium by Response Surface Methodology (반응표면분석에 의한 소국(小菊) 에탄올 추출물의 추출조건 최적화)

  • Park, Nan-Young;Kwon, Joong-Ho;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1189-1196
    • /
    • 1998
  • Extraction conditions were optimized using response surface methodology for preparing high-quality ethanol extracts from cultivated Chrysanthemum petals. A fractional factorial design was applied to investigate effects of solvent ratio to sample $(X_1)$, ethanol concentration $(X_2)$ and extraction time $(X_3)$ at $60^{\circ}C$ on dependent variables of the extract properties, such as yellow color $(Y_1)$, carotenoids $(Y_2)$, soluble solids $(Y_3)$, phenolic compounds $(Y_4)$, electron donating ability $(Y_5)$, sensory color $(Y_6)$ and sensory aroma $(Y_7)$. Second-order models were employed to generate 3-dimensional response surfaces for dependent variables and their coefficients of determination $(R^2)$ were ranged from 0.8063 to 0.9963. Optimum extraction conditions for each variable were 115 mL/g, 97%, 18 hr in yellow color, 145 mL/g, 50%, 12 hr in carotenoids, 147 mL/g, 48%, 17 hr in soluble solids, 116 mL/g, 68%, 17 hr in phenolic compounds, 110 mL/g, 98%, 14 hr in electron donating ability, 101 mL/g, 48%, 54 hr in organoleptic color and 109 mL/g, 54%, 4 hr in organoleptic aroma, respectively. The range of optimum conditions at 16hr extraction for maximized characteristics of ethanol extracts was $103{\sim}122\;mL/g$ and $64{\sim}78%$. Predicted values at the optimum condition agreed with experimental values.

  • PDF