• Title/Summary/Keyword: time-dependent behavior

Search Result 696, Processing Time 0.167 seconds

Age-Dependent Behaviors of Curved Composite Girder (곡선형 합성거더의 재령종속적 거동)

  • Park, Kun-Tae;Park, Yeong-Seong;Yeon, Dal-Goo;Sung, Won-Jin;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.79-80
    • /
    • 2010
  • Age-dependent laboratory tests for a curved composite box girder were carried out to investigate age-dependent effects of concrete on toraional behavior of a curved girder. Time-dependent incremental finite element method predicted the toraional behavior as well as flexural including axial behaviors of the test specimen.

  • PDF

Time-dependent stresses and curvatures in cracked R.C. sections under working loads

  • Al-Zaid, Rajeh Z.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.363-376
    • /
    • 2004
  • The present study provides a relatively simple and accurate analytical model for the prediction of time-dependent stresses and curvatures of cracked R.C. sections under working loads. A more simplified solution is also provided. The proposed models are demonstrated by considering a numerical example and conducting a parametric study on the effects of relevant R.C. design parameters. In contrary to tension reinforcement, the compression reinforcement is found to contribute significantly in reducing tensile stresses in tension steel and in reducing the total section curvatures. The good accuracy of the proposed approximate solution opens a new vision towards a simple yet accurate model for the prediction of time-dependent effects in R.C. structures.

Analysis of Multi-Story Prestressed Concrete Structure Considering the Effect of Construction Stage (시공단계의 영향을 고려한 프리스트레스 콘크리트 다층 구조물의 해석)

  • Jeon, Chan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This paper presents an analytical procedure for the time-dependent analysis of the multi-story prestressed concrete structure under the construction stage. To account for the actual structural behavior, the procedure considers the effects due to the construction interval and the time-dependent losses of prestress at every construction step on the entire structural response. A numerical study is performed to demonstrate the general validity of the approach and to quantitatively evaluate the effects resulted from the time-dependent behaviors during construction. Recommendations and conclusions are developed by comparisons with structural responses using the present and conventional methods of analysis. The comparative results show that both effects of sequential construction and time-dependent prestress losses should be considered for the construction stage analysis.

  • PDF

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.

POWER TAIL ASYMPTOTIC RESULTS OF A DISCRETE TIME QUEUE WITH LONG RANGE DEPENDENT INPUT

  • Hwang, Gang-Uk;Sohraby, Khosrow
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.87-107
    • /
    • 2003
  • In this paper, we consider a discrete time queueing system fed by a superposition of an ON and OFF source with heavy tail ON periods and geometric OFF periods and a D-BMAP (Discrete Batch Markovian Arrival Process). We study the tail behavior of the queue length distribution and both infinite and finite buffer systems are considered. In the infinite buffer case, we show that the asymptotic tail behavior of the queue length of the system is equivalent to that of the same queueing system with the D-BMAP being replaced by a batch renewal process. In the finite buffer case (of buffer size K), we derive upper and lower bounds of the asymptotic behavior of the loss probability as $K\;\longrightarrow\;\infty$.

Study on the Time Dependent Stress-Strain Behavior of Clay (점성토의 시간의존적 응력 - 변형 특성에 관한 연구)

  • 지인택;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF

Dynamic behavior of a supporting structure subjected to a force of time dependent frequency (시간종속적 하중이 작용하는 구조물의 동특성)

  • 정태진;박영조
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.66-72
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of a supporting structure subjected to a force of time dependent frequency. The effect of solid viscosity is studied when the frequency of external force passes through the first critical frequency of the simple beam for four times. Within the Euler-Bernoulli beam theory, the solutions are obtained by using finite Fourier and Laplace transformation methods with respect to space and time variables. The result shows that the maximum value of the dynamic deflection is considerably affected by the value of the solid viscosity as well as the frequency difference The maximum dynamic deflection is found to occur in the frequency lower limit C of 0.85-0.985 in the presence of the solid viscosity.

  • PDF

Analysis of Thermo-Viscoplastic Behavior of Structures Using Unified Constitutive Equations (통일구성방정식을 이용한 구조물의 열점소성 거동에 관한 해석)

  • 윤성기;이주진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.190-200
    • /
    • 1991
  • Certain structural components are exposed to high temperatures. At high temperature, under thermal and mechanical loading, metal components exhibit both creep and plastic behavior. The unified constitutive theory is to model both the time-dependent behavior(creep) and the time-independent behavior(plasticity) in one set of equations. Microscopically both creep and plasticity are controlled by the motion of dislocations. A finite element method is presented encorporating a unified constitutive model for the transient analysis of viscoplastic behavior of structures exposed to high temperature.