• 제목/요약/키워드: time series forecast

검색결과 370건 처리시간 0.02초

A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets

  • Hussain, Syed Nazir;Aziz, Azlan Abd;Hossen, Md. Jakir;Aziz, Nor Azlina Ab;Murthy, G. Ramana;Mustakim, Fajaruddin Bin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.115-129
    • /
    • 2022
  • Adopting Internet of Things (IoT)-based technologies in smart homes helps users analyze home appliances electricity consumption for better overall cost monitoring. The IoT application like smart home system (SHS) could suffer from large missing values gaps due to several factors such as security attacks, sensor faults, or connection errors. In this paper, a novel framework has been proposed to predict large gaps of missing values from the SHS home appliances electricity consumption time-series datasets. The framework follows a series of steps to detect, predict and reconstruct the input time-series datasets of missing values. A hybrid convolutional neural network-long short term memory (CNN-LSTM) neural network used to forecast large missing values gaps. A comparative experiment has been conducted to evaluate the performance of hybrid CNN-LSTM with its single variant CNN and LSTM in forecasting missing values. The experimental results indicate a performance superiority of the CNN-LSTM model over the single CNN and LSTM neural networks.

Forecasting daily PM10 concentrations in Seoul using various data mining techniques

  • Choi, Ji-Eun;Lee, Hyesun;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.199-215
    • /
    • 2018
  • Interest in $PM_{10}$ concentrations have increased greatly in Korea due to recent increases in air pollution levels. Therefore, we consider a forecasting model for next day $PM_{10}$ concentration based on the principal elements of air pollution, weather information and Beijing $PM_{2.5}$. If we can forecast the next day $PM_{10}$ concentration level accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to help forecast a daily mean $PM_{10}$, a daily max $PM_{10}$ and four stages of $PM_{10}$ provided by the Ministry of Environment using various data mining techniques. We use seven models to forecast the daily $PM_{10}$, which include five regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network), and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in the $PM_{10}$ concentration forecast and the linear regression and Randomforest model performs the best in the $PM_{10}$ class forecast. The results also indicate that the $PM_{10}$ in Seoul is influenced by Beijing $PM_{2.5}$ and air pollution from power stations in the west coast.

시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측 (The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption)

  • 김진호;이창용
    • 산업경영시스템학회지
    • /
    • 제42권1호
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석 (The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network)

  • 이창용;김진호
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측 (Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

Markov Chain Approach to Forecast in the Binomial Autoregressive Models

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.441-450
    • /
    • 2010
  • In this paper we consider the problem of forecasting binomial time series, modelled by the binomial autoregressive model. This paper considers proposed by McKenzie (1985) and is extended to a higher order by $Wei{\ss}$(2009). Since the binomial autoregressive model is a Markov chain, we can apply the earlier work of Bu and McCabe (2008) for integer valued autoregressive(INAR) model to the binomial autoregressive model. We will discuss how to compute the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$ when T periods are used in fitting. Then we obtain the maximum likelihood estimator of binomial autoregressive model and use it to derive the maximum likelihood estimator of the h-step-ahead forecast of the conditional probabilities of $X_{T+h}$. The methodology is illustrated by applying it to a data set previously analyzed by $Wei{\ss}$(2009).

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究) (A Study on Daily Water Demand Prediction Model)

  • 구자용;소천명;이나카주 토요노
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

예측치 결합을 위한 PNN 접근방법 (A PNN approach for combining multiple forecasts)

  • 전덕빈;신효덕;이정진
    • 대한산업공학회지
    • /
    • 제26권3호
    • /
    • pp.193-199
    • /
    • 2000
  • In many studies, considerable attention has been focussed upon choosing a model which represents underlying process of time series and forecasting the future. In the real world, however, there may be some cases that one model can not reflect all the characteristics of original time series. Under such circumstances, we may get better performance by combining the forecasts from several models. The most popular methods for combining forecasts involve taking a weighted average of multiple forecasts. But the weights are usually unstable. In cases the assumptions of normality and unbiasedness for forecast errors are satisfied, a Bayesian method can be used for updating the weights. In the real world, however, there are many circumstances the Bayesian method is not appropriate. This paper proposes a PNN(Probabilistic Neural Net) approach as a method for combining forecasts that can be applied when the assumption of normality or unbiasedness for forecast errors is not satisfied. In this paper, PNN method, which is similar to Bayesian approach, is suggested as an updating method of the unstable weights in the combination of the forecasts. The PNN method has been usually used in the field of pattern recognition. Unlike the Bayesian approach, it requires no assumption of a specific prior distribution because it gets probabilities by using the distribution estimated from given data. Empirical results reveal that the PNN method offers superior predictive capabilities.

  • PDF

삼각퍼지수를 이용한 시계열모형 (Time Series Using Fuzzy Logic)

  • 정혜영;최승회
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.517-530
    • /
    • 2008
  • 본 논문은 시간의 흐름에 따라 일정한 간격으로 관측된 시계열자료에 대한 통계적인 관계를 추정하기 위하여 삼각퍼지수를 이용한 퍼지시계열모형을 소개한다. 모든 관측치를 포함하는 전체집합을 분할하는 구간을 자료의 빈도수에 따라 결정하고 연속되는 두 시점에서 퍼지수가 일치하는 경우에는 관측된 자료의 차에 대한 정보를 이용하여 제안된 퍼지시계열모형을 추정한다. 예제를 이용하여 제안된 퍼지시계열모형의 정확성을 일반적인 시계열모형과 여러 가지 방법으로 추정된 퍼지시계열모형과 비교한다.