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Abstract
Interest in PM10 concentrations have increased greatly in Korea due to recent increases in air pollution levels.

Therefore, we consider a forecasting model for next day PM10 concentration based on the principal elements of
air pollution, weather information and Beijing PM2.5. If we can forecast the next day PM10 concentration level
accurately, we believe that this forecasting can be useful for policy makers and public. This paper is intended to
help forecast a daily mean PM10, a daily max PM10 and four stages of PM10 provided by the Ministry of Environ-
ment using various data mining techniques. We use seven models to forecast the daily PM10, which include five
regression models (linear regression, Randomforest, gradient boosting, support vector machine, neural network),
and two time series models (ARIMA, ARFIMA). As a result, the linear regression model performs the best in
the PM10 concentration forecast and the linear regression and Randomforest model performs the best in the PM10

class forecast. The results also indicate that the PM10 in Seoul is influenced by Beijing PM2.5 and air pollution
from power stations in the west coast.

Keywords: PM10 concentration, linear regression, Randomforest, gradient boosting, support vec-
tor machine, neural network, ARFIMA

1. Introduction

Recently, Korea scored 45.51 out of 100 in the “Environmental Performance Index 2016” in air qual-
ity, which was announced by joint researchers in Yale University and Columbia University, and ranked
173 out of 180 countries. People are more interested in PM10 levels now and there are many articles
about fine particulate pollution (PM10) in the media in Korea. PM10 is a fine particular with aerody-
namic diameter of up to 10µm, which are not filtered by the bronchial tubes and cause many diseases.
Shaughnessy et al. (2015) reported that the number of patients with lung disease increases as the
PM10 level increases. Zúñiga et al. (2016) found that a high concentration of PM10, ozone and nitro-
gen dioxide can result in a high mortality from cardiovascular and pulmonary disease.

The Korea Ministry of Environment provides the real-time PM10 concentration and next day fore-
cast with four classes: “good” for 0 to 30, “normal” for 31 to 80, “bad” for 81 to 150 and “very bad”
for more than 150. Recently, there are many days with PM10 classified as bad or very bad in Korea.
Therefore, people want to know what causes the high PM10 concentration in Korea. Many factors can
cause a high PM10 concentration; however, most people believe that the major reasons are severe air
pollution from China, Korea’s thermal energy plants on the west coast, and using old diesel vehicles.

We examine which factors affect the PM10 concentration as well as build a forecast model for the
next day mean and max of PM10 concentration. We believe that this analysis will be helpful to public
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Table 1: Description of variables

Category Variables Type

Air pollutant

fine particular (PM10) hourly numeric
ozone (O3) daily numeric
carbon monoxide (CO) daily numeric
sulfur dioxide (SO2) daily numeric
nitrogen dioxide (NO2) daily numeric

Meteorological elements

temperature daily numeric
wind speed daily numeric
wind direction daily category
relative humidity daily numeric
sea level pressure daily numeric
hours of daylight daily numeric
duration of fog daily numeric
precipitation daily numeric
duration of precipitation daily numeric
1 hour solar radiation daily numeric
solar radiation daily numeric
fresh snow cover daily numeric
amount of clouds daily numeric
yellow warning daily category

China air quality beijing PM2.5 daily numeric

and policy makers in Korea. There are several studies about PM10 forecasting. Sayegh et al. (2014)
used a multiple regression, GAM and QPM model to forecast PM10. Perez and Reyes (2006) and
Taneja et al. (2016) used an integrated neural network and SARIMA (Seasonal ARIMA). In addition,
Chaloulakou et al. (2003), Hooyberghs et al. (2005), Nejadkoorki and Baroutian (2012), Poggi and
Portier (2011), and Cheng et al. (2013) also forecast PM10 using a linear regression and clustering
method.

In this paper, we will use seven different models to forecast PM10 concentrations: two time series
models (ARIMA, ARFIMA) and five regression models (linear regression, Randomforest, support
vector machine (SVM), boosting, neural network). We will use several explanatory variables in our
analysis. They are PM2.5 in Beijing, air pollutants, yellow sand and meteorological elements.

The paper is and organized as follows. In Section 2, we explain the data and the variables used in
the analysis. We explain the preparation of variables in detail because all data are time series data. In
Section 3, we compare several PM10 forecasting models and find the best model for both regression
and classification. Section 4 provides the concluding remarks.

2. Data

In this section, we describe the dataset used in forecasting daily PM10 and preparation of variables.

2.1. Data collection

We consider the various explanatory variables for forecasting daily PM10 concentration. In Ta-
ble 1 provides the descriptions of and types of variables. Data were collected from 2011/08/01 to
2015/07/31.

PM10 level is recorded hourly; however, we will use a daily PM10 mean and max as the response
variables in our analysis. However, these hourly PM10 values can be used as explanatory variables in
the model. Air pollution data are obtained from Air Korea (www.airkorea.or.kr/realSearch), which in-
dicates real-time air pollution levels recorded by the Korea Environmental Management Corporation.
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Figure 1: Time series plots of PMmean
10 and PMmax

10 .

Meteorological element information is obtained from weather information portal (data.kma.go.kr) and
yellow dust information is obtained from the Korea Meteorological Administration. Beijing PM2.5 is
collected from StateAir (Air Quality Monitoring Program), which is managed by U.S. Department of
State.

2.2. Missing data

Some variables contain missing values. For meteorological data, precipitation, maximum fresh snow
cover, and duration of fog are missing values not offered by the Meteorological Administration, if
there was no snow, rain and fog. These missing values are replaced by 0. Sea-level pressure and hours
of daylight have one missing value and 1-hour solar radiation and solar radiation have 13 missing
values. These missing values are imputed by K-nearest neighbor (KNN) method which replaces the
missing value using only K-nearest observations.

2.3. Data preparation

Our goal of study is to forecast daily mean and max PM10 as well as class of PM10, using variables
that are expected to affect the concentration of PM10. In this section, we describe how we build each
explanatory variable in our model. Let xt be a vector of data x at time t, t = 1, . . . , n and n be the
number of data. For the time series variables, we consider the difference series ∆Xt = Xt − Xt−1. We
also consider the explanatory variable up to lag p as {xt−1, . . . , xt−p} because the current PM10 level is
affected by previous explanatory variables and use previous data to forecast future PM10 level. This
lag p can be different for each variable and we select proper p using autocorrelation function (ACF)
of original series and difference series. We denote the mean and max of PM10 as PMmean

10 and PMmax
10 .

More detailed procedures are as follows.

2.3.1. PM10 concentration

Figure 1 displays time series plot of daily mean and max PM10 concentration in Seoul from 2011/08/01
to 2015/07/31. Both of PMmean

10 and PMmax
10 show similar trends by year. We can see that PMmean

10
and PMmax

10 levels are high in the winter and spring, and low in the summer and fall. PM10 seems
exceptionally high in February 2015. In year 2015, PMmean

10 is 568.6 µg/m3 on February 23, the PMmax
10

is 880.36 µg/m3 on February 8 and 901.52 µg/m3 on February 23 when the yellow dust warning was
issued.

The previous PM10 is expected to have influence on the present PM10; therefore, we consider
previous PM10 as explanatory variables. A period of past PM10 affecting current PM10 is determined
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Figure 2: ACF plots of original data and differential data. ACF = autocorrelation function.

by examining the ACF plot. Figure 2 is the ACF plots of original series and difference series for
PMmean

10 and PMmax
10 . We can see that the original series have long memory. Therefore, we have to

include too many explanatory variables in our model if we consider all significant lags for ACF. On
the contrary, the differential data has short memory and it is possible to consider only a few past PM10
levels as explanatory variables. Thus, we forecast differential PMmean

10 and PMmax
10 in our model. The

differential PMmean
10 and PMmax

10 is denoted by ∆PMmean
10 and ∆PMmax

10 .
Previous ∆PMmean

10 and ∆PMmax
10 will be used as explanatory variables and we have to select a

proper log p in our model. We select the appropriate lag of ∆PMmean
10 and ∆PMmax

10 based on the
performance of the ARIMA model for one-step out of forecast. We partition data from 2011/08/01 to
2013/07/31 as a training set and data from 2013/08/01 to 2014/07/31 as a test set. As the performance
measures, we consider root mean squared error (RMSE) and mean absolute error (MAE):

RMSE =
1
n

√√ n∑
t=t0+1

(
∆PM10,t − ∆P̂M10,t

)2
,

MAE =
1
n

n∑
t=t0+1

∣∣∣∣∆PM10,t − ∆P̂M10,t

∣∣∣∣ ,
where t0 is the number of train data and P̂M10,t is one-step forecast PM10 at time t. Figure 3 provides
RMSE and MAE plots based on ARIMA (p, 1, 0) model. The decrement of RMSE and MAE for
∆PMmean

10 and ∆PMmax
10 are large in lag up to three, after that, the decrement seems slight. Therefore,
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Figure 3: RMSE and MAE plots for ARIMA(p) models. RMSE = root mean squared error; MAE = mean
absolute error.

we consider ∆PM10,t−1, ∆PM10,t−2, ∆PM10,t−1 as explanatory variables to forecast ∆PM10,t. We also
include previous PM10 up to lag 3 as explanatory variables.

PM10 levels from the previous day will also affect mostly next day PM10. Therefore, we investigate
more for hourly PM10 levels in the previous day. We believe including 24 hourly PM10 levels in the
model is not appropriate. Hence, we try to find the best time intervals for the previous hourly PM10 in
our model. We used tree models and various correlation plots. We found that these four intervals are
easy to interpret and one of the best means to forecast next day PM10 levels. We denote that PMmean,1

10,t−1

is the mean PM10 value for 0 to 6 hour in the previous day; PMmean,2
10 is for 6 to 12; PMmean,3

10 is for 12
to 18; PMmean,4

10 is for 18 to 24.
We also consider that the day and month effect for PM10. PM10 concentration is anticipated to be

high in the spring due to yellow dust and on week days due to commuter transport in Seoul. In order
to confirm that PM10 actually differs by month and day, we made box plots of PMmean

10 and PMmax
10 by

month and day in Figure 4. We remove outliers in order to see the difference clearly. The outliers
exist on February 23 for both of PMmean

10 and PMmax
10 and on February 22 only for PMmax

10 . The figure of
PMmean

10 by month reveals that PMmean
10 is higher in November–May than in June–October. The daily

PMmean
10 is higher on weekdays than weekends. Dummy variables for months and days are included in

the explanatory variables.
Consequently, the explanatory variables for ∆PM10,t are determined as past 3 days PM10 (PM10,t−1,

PM10,t−2, PM10,t−3), past 3 days difference PM10 (∆PM10,t−1, ∆PM10,t−2,∆PM10,t−3), hourly PM10 on
previous day (PM1

10,t−1,PM2
10,t−1, PM3

10,t−1,PM4
10,t−1) and dummy variables for months and days.

2.3.2. Air pollution concentration

Air pollutants are commonly known as ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2) and
nitrogen dioxide (NO2). Carbon monoxide is known to be generated by the incomplete combustion
of carbon which is mainly emitted by transportation methods. Sulfur dioxide is released when fossil
fuels, such as coal and petroleum their contains sulfur, are burned. It is mainly generated in power
plants, heating equipment, and industrial processes. Nitrogen dioxide is generated by the oxidation of
nitrogen monoxide which is made from vehicle exhaust and power plants. We consider air pollutants
as explanatory variables since the increase in automobile emissions and coal consumption is one of
the main causes of PM10.

We can use daily mean or max or both as explanatory variables in our model. We examined the
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Figure 4: Box plots of PMmean
10 and PMmax

10 by month and day.

Figure 5: CCF plots for PMmean
10 and ∆PMmean

10 . CCF = cross and covariance and correlation function.

relation between these variables and PMmean
10 from four plots in Figure 5. The two plots in top row

are cross and covariance and correlation function (CCF) of PMmean
10 and COmean, and CCF of PMmean

10
and COmax. Two plots in bottom row are CCF of ∆PMmean

10 and COmean, and CCF of ∆PMmean
10 and

COmax. In CCF plots, PMmean
10 and COmean or COmax have long memory, but ∆PMmean

10 and COmean
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Table 2: Description of response and selected explanatory variables
Category Variables Variable explanation Variables Variable explanation
Response ∆PMmean

10,t difference daily mean PM10 (present - 1day ago) ∆PMmax
10,t difference daily max PM10 (present–1day ago)

PMmean
10,t−1 daily mean PM10 (1 day ago) PMmax

10,t−1 daily max PM10 (1 day ago)
PMmean

10,t−2 daily mean PM10 (2 day ago) PMmax
10,t−2 daily max PM10 (2 day ago)

PMmean
10,t−1 daily mean PM10 (3 day ago) PMmax

10,t−3 daily max PM10 (3 day ago)
∆PMmean

10,t−1 difference daily mean PM10 (1 day–2 day ago) ∆PMmax
10,t−1 difference daily max PM10 (1 day–2 day ago)

∆PMmean
10,t−2 difference daily mean PM10 (2 day–3 day ago) ∆PMmax

10,t−2 difference daily max PM10 (2 day–3 day ago)
Previous ∆PMmean

10,t−1 difference daily mean PM10 (3 day–4 day ago) ∆PMmax
10,t−3 difference daily max PM10 (3 day–4 day ago)

PM10 PMmean,1
10,t−1 mean PM10 0–6 hours PMmax,1

10,t−1 max PM10 0–6 hours
PMmean,2

10,t−1 mean PM10 6–12 hours PMmax,2
10,t−1 max PM10 6–12 hours

PMmean,3
10,t−1 mean PM10 12–18 hours PMmax,3

10,t−1 max PM10 12–18 hours
PMmean,4

10,t−1 mean PM10 18–24 hours PMmax,4
10,t−1 max PM10 18–24 hours

month.int month (January–December) month.int month (January–December)
day.int Mon, Tues, Wed, Thurs, Fri, Sat, Sun day.int Mon, Tues, Wed, Thurs, Fri, Sat, Sun
SOmean

2,t−1 mean SO2 (1 day ago) SOmean
2,t−1 mean SO2 (1 day ago)

SOmean
2,t−2 mean SO2 (2 day ago) SOmean

2,t−2 mean SO2 (2 day ago)
COmean

t−1 mean CO (1 day ago) COmean
t−1 mean CO (1 day ago)

Air pollutant COmean
t−2 mean CO (2 day ago) COmean

t−2 mean CO (2 day ago)
NOmean

2,t−1 mean NO2 (1 day ago) NOmean
2,t−1 mean NO2 (1 day ago)

NOmean
2,t−2 mean NO2 (2 day ago) NOmean

2,t−2 mean NO2 (2 day ago)
Omean

3,t−1 mean O3 (1 day ago) Omean
3,t−1 mean O3 (1 day ago)

temmean
t−1 mean temperature (1 day ago) temmean

t−1 mean temperature (1 day ago)
speedmean

t−1 mean wind speed (1 day ago) speedmean
t−1 mean wind speed (1 day ago)

dirt−1 wind direction (16 bearing) (1 day ago) dirt−1 wind direction (16 bearing) (1 day ago)
dirt−2 wind direction (16 bearing) (2 day ago) humidmean

t−1 mean relative humidity (%) (1 day ago)
humidmean

t−1 mean relative humidity (%) (1 day ago) humidmean
t−2 mean relative humidity (%) (2 day ago)

Meteorological rain.hourt−1 duration of precipitation (1 day ago) rain.hourt−1 duration of precipitation (1 day ago)
elements raint−1 precipitation (1 day ago) raint−1 precipitation (1 day ago)

pressmean
t−1 mean sea level pressure (1 day ago) pressmean

t−1 mean sea level pressure (1 day ago)
sun.sumt−1 solar radiation (1 day ago) sun.sumt−1 solar radiation (1 day ago)
sun.hourt−1 hours of daylight (1 day ago) sun.hourt−1 hours of daylight (1 day ago)

cloud.hourt−1 mean amount of clouds (1 day ago) cloud.hourt−1 mean amount of clouds (1 day ago)
fog.hourt−1 duration of fog (1 day ago) fog.hourt−1 duration of fog (1 day ago)
sun.hight−1 1 hour solar radiation (1 day ago) sun.hight−1 1 hour solar radiation (1 day ago)

dustt−1 yellow dust warning dustt−1 yellow dust warning

China air beijingmean
t−1 beijing PM2.5 (1 day ago) beijingmean

t−1 beijing PM2.5 (1 day ago)

quality beijingmean
t−2 beijing PM2.5 (2 day ago) beijingmean

t−2 beijing PM2.5 (2 day ago)
beijingmean

t−3 beijing PM2.5 (3 day ago) beijingmean
t−3 beijing PM2.5 (3 day ago)

or COmax have short memory. Accordingly, if we use ∆PM10 as response variables, we can consider
only a few explanatory variables by selecting the variables up to significant lags in CCF plots. We can
see that COmean and COmax have a similar pattern. However, COmean has a higher correlation without
∆PMmean

10 . Therefore, we will use COmean in our model only up to lag = 2. For the other air pollutant
variables, we repeat the above procedure and then select the explanatory variables. We also did the
same procedures for PMmax

10 . Table 2 presents the selected air pollutants variables.

2.3.3. Meteorological elements

Air quality is influenced by wind, humidity, duration of fog, precipitation and yellow dust. Among
the meteorological elements, yellow dust is a phenomenon characterized by finest dust that originates
in China and Inter Mongolia, that blows in on the westerlies. A yellow dust watch is issued if the level
is greater than 800 and expected to last more than 2 hours. It is likely that the yellow dust level affects
PM10 level. Therefore we include this variable in our model: if the yellow dust watch is issued in the
previous day, the variable is one; otherwise, the variable is zero. The other meteorological elements
are also considered as explanatory variables and these time series variables are selected thorough the
same method in Section 2.3.2. Table 2 presents the selected weather-related variables.
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2.3.4. PM2.5 concentration in Beijing

The concentration of PM10 in Korea is conjectured to be affected by the air quality in China due to its
geographical proximity. In order to address the influence, we consider the PM2.5 in Beijing which is
the measure of level of fine dust in China. The explanatory variables related to PM2.5 were selected by
the same method as in Section 2.3.2; Table 2 presents the selected variables. Finally, Table 2 shows
the explanatory variables used for forecasting ∆PMmean

10 and ∆PMmax
10 .

3. Analysis

This section explains how to construct an optimal forecasting model for PMmean
10 and PMmax

10 . We
will also explain the classification model to forecast four classes of PM10. We use four years of data
(2011/08/01–2015/07/31) in our analysis. The last one year of data (2014/08/01–2015/07/31) will be
used as a test data to find the optimal model. We believe that the optimal model is the model with
the best forecast performance in this test data. For the measure of the performance, we will use as
the RMSE for regression and the misclassification rate for classification. The model with the smallest
RMSE or the misclassification rate in the test data is the best model.

We have to consider several factors in order to find the best model: the periods of time and window
types in a training data. We can use either 1 or 2 or 3 years of data to fit a model in a training set since
we have 3 years of data in a training set. We can also use either a growing window or moving window
type. A more detailed explanation follows. Assume that we have a dataset up to time t+1 and we want
to forecast ∆PM10 at time t + 2. A growing window is using the data from 1 to t + 1 time for ∆PM10
forecasts. Whereas, moving window is using the data from 2 to t + 1 time, if we set to window size as
t. Therefore, a growing window is the forecast method using all of the train data and moving window
is the method that uses data within a certain period of time. The comparison is also conducted for
seven forecast models: two time series models such as ARIMA proposed by Box and Jenkins (1976)
and ARFIMA proposed by Granger and Roselyne (1980); five regression models as linear regression
with stepwise procedure, Randomforest (Breiman, 2001), Gradient boosting model (Friedman, 2002;
Ridgeway, 2012), Neural Network (Hastie et al., 2009) and SVM (Corte and Vapnik, 1995). The seven
models are briefly described in Park et al. (2011) and Hastie et al. (2009). Therefore we consider 42
combinations: three time periods (1, 2, 3 years), two window types (growing, moving window) and
seven regression models.

3.1. Forecasting PM10 in Seoul

We forecast daily mean PM10 in Section 3.1.1 and daily max PM10 in Section 3.1.2. We forecast
∆PM10 first and then convert ∆PM10 into PM10. We explain how to find the optimal model in detail.
Since we have four years of data (2011/08/01–2015/07/31). We use the first three years of data as a
training set and the last one year of data as a test set. The best model is the model with a minimum
RMSE in the test set. We need to find the optimal tuning parameter for each method using only
training data. Therefore, we partition training data according to time periods. For example, if we use
1 year time period, we use 1 year of data (2011/08/01–2012/07/31) as a training set and the last 2
years of data (2012/08/01–2014/07/31) as a test set. If we use the 2 year time period, we first use 2
year of data as a training and the last 1 year of data as a test. We cannot partition the training data
for the 3 year time period since we have only 3 years of data. Therefore, we use the optimal tuning
parameter values from the 2 year time period model (Figure 6).
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Figure 6: Explanation of training data set and test data set.

Table 3: Set of explanatory variables related to previous PM10

Previous daily PM10 Previous differential PM10 Previous hourly PM10

Set 1 PM10,t−1, PM10,t−2, PM10,t−3 ∆PM10,t−1, ∆PM10,t−2, ∆PM10,t−3 PM1
10,t−1, PM2

10,t−1, PM3
10,t−1, PM4

10,t−1
Set 2 ∆PM10,t−1, ∆PM10,t−2, ∆PM10,t−3 PM1

10,t−1, PM2
10,t−1, PM3

10,t−1, PM4
10,t−1

Set 3 PM1
10,t−1, PM2

10,t−1, PM3
10,t−1, PM4

10,t−1

3.1.1. Daily mean PM10

We forecast mean PM10 using the seven models with the explanatory variables in Table 2 and compare
forecast performances for the seven models. For each model, we tried to find the optimal tuning
parameters with the above procedure. For example, for the 2 year training set, we obtained the optimal
tuning parameters as: for ARIMA, (p, d, q) = (3, 1, 0); for ARFIMA, (p, d, q) = (10, 0.47, 10); for
SVM, (cost, kernel) = (0.09, linear); for Neural Network, (size, decay) = (4, 25); for Boosting, (shrink,
ntree, interaction depth) = (0.01, 900, 4); for Randomforest, mtry = 7.

We cannot use all possible regression methods to find the optimal model since there are many of
explanatory variables. We use a stepwise regression for variable selection; however, we found that
including all available variables in the model does not necessarily provide the best result. Therefore,
we tried three different sets of PM10 related variables described in Table 3. You can see that set 1 has
all PM10 related variables. Set 2 does not have previous daily PM10 variables. Set 3 has only previous
hourly PM10 variables. Consequently, Set 3 gives the best forecast performance and we report the
result using only Set 3 for PM10 related variables found in Table 4.

RMSEs are not significantly different by time periods and window types. However, it shows large
differences among forecast models. Especially, the regression models have a better forecast perfor-
mance than time series models. This indicates that the forecast performance improves by including
explanatory variables. Among the seven models, linear regression and SVM performs better than
other models. The best model is the linear regression model with a 2 year time period and a moving
window type.
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Table 4: Test error of the models for PMmean
10

1 year 2 year 3 year
Growing Moving Growing Moving Growing Moving

Linear regression 18.90 19.81 18.92 18.82 19.23 19.11
ARIMA 37.15 39.11 35.49 36.15 34.69 34.91

ARFIMA 38.28 34.80 35.86 36.50 34.62 40.72
Randomforest 36.14 36.59 35.88 36.20 36.19 36.14

Boosting 33.94 34.51 33.78 33.47 33.93 34.05
Neural Network 37.68 37.67 37.67 37.67 37.67 37.67

SVM 19.20 19.68 19.44 19.26 19.30 19.51

Note: Bold type is the smallest test error for each period of the train data. SVM = support vector machine.

Figure 7: Time series plot of PMmean
10 forecasts from linear regression and SVM. SVM = support vector machine.

Table 5: Important variables in forecasting PMmean
10

Category Increase (+) Decrease (−)
meteorological elements humidt−1, sun.hourt−1 cloud.meant−1, temt−1, presst−1

air pollutant NO2,t−1
month May January–April, June–December

day weekdays weekend
hourly mean PM10 18–24 hour 0–18 hour
China air quality beijingt−1 beijingt−2

Figure 7 displays time series plot of forecast from linear regression and SVM. Both models fore-
cast PM10 adequately. The performance difference between linear regression and SVM is very small;
however, we choose the linear regression model as the best model better interpretability for daily
PMmean

10 because it has.
Table 5 represents the sign of the selected variables from the final (best) linear regression model.

The table shows that among the meteorological variables on the previous day, humidity, cloudiness,
temperature, sea level pressure and hours of daylight influence daily mean PM10 on the present day.
The daily mean PM10 increases as the humidity and hours of daylight increases; however, the increase
in other meteorological factors leads to an decrease in daily mean PM10. Among air pollutants, only
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Table 6: Test error of the models for PMmax
10

1 year 2 year 3 year
Growing Moving Growing Moving Growing Moving

Linear regression 52.68 54.05 52.48 52.54 51.97 52.05
ARIMA 63.45 65.16 62.39 62.49 61.75 62.20

ARFIMA 64.49 62.32 62.11 63.02 61.96 67.26
Randomforest 64.21 64.43 63.78 64.10 63.17 63.33

Boosting 63.73 64.79 62.84 63.31 62.59 62.47
Neural Network 69.06 69.06 69.08 69.06 69.05 69.06

SVM 52.95 53.22 52.98 52.82 52.73 52.65

Note: Bold type is the smallest test error for each period of the train data. SVM = support vector machine.

sulfur dioxide affects mean PM10. Sulfur dioxide is a by-product from power plants or heating equip-
ment; therefore, we can see the relationship between PMmean

10 and these facilities. The mean PM10 is
also more in May than other months. The only month with a positive coefficient is May. All other
months have negative coefficients. However, if we examine the coefficient values, we can see that the
coefficient for summer and autumn are lower than winter and spring. It coincides with the boxplot of
monthly PM10 in Figure 4. The mean PM10 also increases more weekdays than on weekends. The
mean PM10 increases on the present day as the mean PM10 for 18 to 24 hour in the previous day
increases. The mean PM10 for 0 to 18 hour shows the opposite. The increase of Beijing PM2.5, one of
the variables of interest, leads to PMmean

10 increasing on the present day. But, the increase of Beijing
PM2.5 on the day before yesterday shows the opposite.

3.1.2. Daily max PM10

In the same way as Section 3.1.1, we forecast max PM10 with the proposed seven models. We tried
to find the optimal tuning parameters for each model. For example, for 2 year training set, we found
(p, d, q) = (3, 1, 0) for ARIMA; (p, d, q) = (3, 0.38, 7) for ARFIMA; (cost, kernel) = (0.1, linear) for
SVM; (size, decay) = (16, 10) for Neural Network; (shrink, ntree, interaction depth) = (0.01, 2000, 2)
for Boosting; mtry = 16 for Randomforest. We also consider three sets of explanatory variables
presented in Table 3. Among the three sets, Set 3 has the best forecast performance as before (Table
6).

We can see that forecast performance does not depend on time periods or window type. However,
the performance is greatly different by the models, similarly in PMmean

10 . Among the seven models,
linear regression and SVM provide better forecast performance than other models. Especially, linear
regression with 3 year time period and a growing window has the smallest RMSE.

Figure 8 shows time series plot of forecast PMmax
10 from linear regression and SVM. The trends of

the forecast from the two models are very close to the trend of PMmax
10 . Accordingly, the best model for

forecasting PMmax
10 is linear regression which provides the obvious relationship between explanatory

variables and the response variable. It also has the best forecast performance.
Table 7 provides sign of the selected variables from the final linear regression model. Unlike the

PMmean
10 model, for meteorological elements, duration of precipitation and yellow dust are included

in the model. The max PM10 increases on the present day as the duration of precipitation decreases
on the previous day. However, the max PM10 increases on the present day when the yellow dust is
occurred on the previous day. For air pollutants, sulfur dioxide and nitrogen dioxide are included as
important variables. As sulfur dioxide increases, max PM10 increases and the increase of nitrogen
dioxide gives the opposite result. These are different with mean PM10 model. The max PM10 is more
increased in weekdays than weekend, and in spring than in summer, autumn and winter. The increase



210 Ji-Eun Choi, Hyesun Lee, Jongwoo Song

Figure 8: Time series plot of PMmax
10 forecasts from linear regression and SVM. SVM = support vector machine.

Table 7: Important variables in forecasting PMmax
10

Category Increase (+) Decrease (−)
meteorological elements humidt−1, dustt−1 cloudmean

t−1 , rain.hourt−1, presst−1
air pollutant SO2,t−1 NO2,t−1, NO2,t−2

day Monday, Wednesday–Thursday Tuesday, Saturday–Sunday
month March–May January–February, June–December

hourly max of PM10 18–24 hour 0–18 hour
China air quality beijingt−1

Figure 9: PMmax
10,t dependence of important variables (beijingmean

t−1 , SO2,t−1, NO2,t−1).

in Beijing PM2.5 on the previous day leads to the increase in max PM10.

Figure 9 shows the scatter plots of PMmax
10 and the variables of interest among the significant

variables in the linear model. As Beijing PM2.5, sulfur dioxide and nitrogen dioxide increase, the max
PM10 increase. Therefore, we can see that carbon emission from automobiles and ultra fine dust from
China have a positive correlation with the max PM10.
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Table 8: The frequencies of four categories of PMmean
10 in the test data

Good Normal Bad Very bad
2014/08/01–2015/07/31 101 242 18 4

Table 9: Misclassification rate of PMmean
10 class (Method 1)

1 year 2 year 3 year
Growing Moving Growing Moving Growing Moving

Linear regression 0.23 0.24 0.22 0.23 0.22 0.22
ARIMA 0.26 0.27 0.26 0.27 0.26 0.26

ARFIMA 0.29 0.29 0.27 0.27 0.26 0.27
Randomforest 0.21 0.21 0.20 0.21 0.21 0.21

Boosting 0.22 0.22 0.21 0.21 0.20 0.21
Neural Network 0.27 0.27 0.27 0.27 0.27 0.27

SVM 0.23 0.22 0.22 0.23 0.24 0.23

Note: bold type is the smallest test error for each period of the train data. SVM = support vector machine.

3.2. Forecasting class of PM10 in Seoul

The Korea Ministry of Environment classifies the PM10 concentrations by four classes: “good” (0–
30), “normal” (31–80), “bad” (81–150) and “very bad” (more than 150). We consider classification
models based on these four categories. We can use three different approaches for this classification.
The first method (Method 1) is the forecast method using regression models. We forecast PM10 using
regression models from Section 3.1.1 and then we classify PM10 forecasts into four categories: if the
predicted value is between 0 to 30, it is classified as “good”; if it is between 31 to 80, it is “normal”;
if it is between 81 to 150, it is “bad”; if it is more than 151, it is “very bad”. The second method
(Method 2) uses numeric class labels as a response. We label the response as 1 if it is “good”, 2 if it
is “normal”, 3 if it is “bad”, and 4 if it is “very bad”. Then we fit the data using the best regression
model in Section 3.1.1. Finally, we classify PM10 forecasts according to predicted values: if the
forecast is smaller than 1.5, it is “good”, if it is between 1.5 and 2.5, it is “normal”, if it is between 2.5
and 3.5, it is “bad” and if it is more than 3.5, it is “very bad”. The last method (Method 3) uses the
classification algorithms. We label the response with four categories and apply several classification
methods: logistic regression, linear discriminant analysis (LDA), Randomforest, and SVM. Sections
3.2.1–3.2.3 presents the forecast results for three methods. For the measure of forecast performance,
we use a misclassification rate. We believe the model with the lowest misclassification rate in a test
data (2014/08/01–2015/07/31) is the best model. Table 8 gives the frequencies of these four categories
in the test data. Most of days in the test data are shown to be either good or normal.

3.2.1. Class of daily mean PM10 using regression methods (Method 1)

In this section, we forecast the class of daily mean PM10 with the regression methods. Table 9 shows
the misclassification rate of PMmean

10 class forecast. The misclassification rates are less than 0.3 for all
of the models. Linear regression, Randomforest, Boosting and SVM have similar and good forecast
performances. However, contrary to the result of Section 3.1, Randomforest and Boosting have the
smallest misclassification rate among the models. We can also see that there is no difference by the
periods and window types of train data. The performances of time series models are worse than that
of regression models. However the difference between time series and regression models are smaller
than Section 3.1.

Table 10 shows confusion matrices for test data (2014/08/01–2015/07/31) obtained from the best
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Table 10: Confusion matrices of PMmean
10 class (Method 1)

Linear regression ARFIMA Randomforest
Good Normal Bad Very bad Good Normal Bad Very bad Good Normal Bad Very bad

Good 63 38 0 0 53 48 0 0 60 41 0 0
Normal 25 213 4 0 29 202 10 1 15 224 3 0

Bad 0 10 8 0 1 12 4 1 0 11 6 1
Very bad 1 0 2 1 0 2 1 1 1 0 2 1

Boosting Neural Network SVM
Good Normal Bad Very bad Good Normal Bad Very bad Good Normal Bad Very bad

Good 63 38 0 0 62 37 2 0 68 33 0 0
Normal 19 222 1 0 32 199 11 0 31 207 4 0

Bad 0 10 7 1 0 11 4 3 0 10 7 1
Very bad 1 1 1 1 1 1 1 1 1 0 2 1

SVM = support vector machine.

Table 11: Misclassification rate of PMmean
10 class (Method 2)

1 year 2 year 3 year
Growing Moving Growing Moving Growing Moving

Linear regression 0.22 0.23 0.21 0.21 0.23 0.22
Randomforest 0.21 0.22 0.19 0.21 0.19 0.20

SVM 0.22 0.23 0.24 0.23 0.22 0.23

Note: bold type is the smallest test error for each period of the train data. SVM = support vector machine.

Table 12: Confusion matrices of PMmean
10 class (Method 2)

Linear regression Randomforest SVM
Good Normal Bad Very bad Good Normal Bad Very bad Good Normal Bad Very bad

Good 69 32 0 0 64 37 0 0 60 41 0 0
Normal 29 211 2 0 18 223 1 0 23 216 3 0

Bad 1 10 6 1 0 10 8 0 0 10 7 1
Very bad 1 1 1 1 1 1 2 0 1 0 2 1

SVM = support vector machine.

models for each method. Most of misclassifications happen between good and normal. It is because
most of observations are in these two categories and are close. The risk of the misclassification is
also different by class. It is more risky when bad and very bad are classified as good and normal
than the opposite. The number of misclassification for this risky case is 11 for linear regression, 15
for ARFIMA, 12 for Randomforest, 12 for Boosting, 13 for Neural network and 11 for SVM. Again,
regression models perform better than time series models.

3.2.2. Class of daily mean PM10 with numeric labels (Method 2)

We next forecast the class of daily mean PM10 with numeric labels using regression models. We
select the explanatory variables again from the proposed method in Section 2 since we cannot use the
differential PMmean

10 as response variable. Linear regression, Randomforest and SVM perform better
than other methods; therefore, we consider only these three models in this section.

Table 11 shows the misclassification rates of PMmean
10 class. The table shows no difference by the

periods and window types of train data. Randomforest has the best performance by 0.19. However,
the difference for models are not significant. In order to confirm the exact forecast performance for
each class, Table 12 provides confusion matrices for each model obtained from the train data showing
the best models for each method. The results are very similar to the previous section.
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Table 13: Misclassification rate of PMmean
10 class (Method 3)

1 year 2 year 3 year
Growing Moving Growing Moving Growing Moving

Logistic regression 0.31 0.25 0.24 0.23 0.25 0.24
LDA 0.27 0.27 0.27 0.25 0.27 0.25

Randomforest 0.19 0.20 0.21 0.21 0.20 0.19
SVM 0.23 0.24 0.23 0.22 0.22 0.23

Note: bold type is the smallest test error for each period of the train data.
LDA = linear discriminant analysis; SVM = support vector machine.

Table 14: Confusion matrices of PMmean
10 class (Method 3)

Logistic regression LDA
Good Normal Bad Very bad Good Normal Bad Very bad

Good 65 35 0 1 61 40 0 0
Normal 32 202 5 3 33 197 12 0

Bad 0 10 6 2 0 10 6 2
Very bad 1 1 0 2 1 1 1 1

Randomforest SVM
Good Normal Bad Very bad Good Normal Bad Very bad

Good 66 35 0 0 56 45 0 0
Normal 22 218 2 0 21 220 1 0

Bad 0 11 7 0 0 11 7 0
Very bad 1 2 1 0 1 2 1 0

LDA = linear discriminant analysis; SVM = support vector machine.

3.2.3. Class of daily mean PM10 using classification methods (Method 3)

Lastly, we forecast the class of daily mean PM10 using classification methods. Table 13 presents the
misclassification rate of PMmean

10 class. For the Method 3, there is slight difference by the period and
window type of train data. Randomforest performs the best among the models.

Table 14 is confusion matrices obtained from the best models for each method. The table shows a
similar result to the previous section.

In terms of misclassification rate, the performance of Randomforest with Methods 2 and 3 are the
same. However, the number of misclassifications for risky cases are different. Randomforest with
Method 2 has 12 misclassification and Randomforest with Method 3 has 14 misclassifications for this
risky case. We also consider the geometric mean (G-mean) proposed by Kubat et al. (1997) as a
measure of weighted accuracy since the data set is highly unbalanced for four categories. High G-
mean score means a better performance. We relabeled the class “good” and “normal” as “normal”
and “bad” and “very bad” as “bad” since the G-mean is defined only when it is two classes. We then
calculate the G-mean for several cases. The best two models in terms of G-mean are Randomforest
model with numeric labels and classification method. Their G-mean scores are 0.55 and 0.51, re-
spectively. Therefore, our final classification model is the Randomforest model with numeric labels.
The important variables selected by the Randomforest model are PMmean,3

10,t−1 , PMmean,4
10,t−1 , PMmean

10,t−1, and
SOmean

2,t−1.

4. Conclusion

As the concentration of PM10 in Korea increases, people are paying more attention to PM10 forecast-
ing. Accordingly, we proposed a forecast model for PM10 and examined some important features that
affect PM10 concentration. Since PM10 is time series data, we consider explanatory variables that in-
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clude the previous PM10 and other elements such as air pollutants, meteorological elements and China
air quality. In order to determine the optimal lag for these variables, we used several plots including
ACF and CCF plots. We consider the significant lags as explanatory variables from the plots of ACF
of PM10 and plots of CCF of PM10 and explanatory variables.

Using these selected variables, we forecast mean and max of PM10 with the seven forecast mod-
els: two time series models ARIMA, ARFIMA and five regression models Linear regression, SVM,
Boosting, Randomforest, Neural Network. We also consider the various training data: three periods
of time (1, 2, 3 year) and two window types (growing, moving). We compare forecast performance for
42 combinations (seven model × six training data) in order to find the optimal forecast model. Among
the models, linear regression shows the best forecast performance and makes it possible to interpret
obvious relationships between explanatory variables and the response variable. We also found that
regression models perform better than pure time series models. However, the forecast performance
does not depend on the period and window types of training data.

We investigate the cause of PM10 from the selected variables in linear regression. We found
that there are seasonal and daily effects on PM10 levels. We also found that PM2.5 in Beijing and
sulfur dioxide related to emissions from power plants affect PM10 levels. However, carbon monoxide
related to automobile emission is not selected as an important variable in our model. Therefore, we
can presume that PM10 is more influenced by the air conditions of China and power plants than by
automobile emissions. We also find that a dramatic increase of PM10 is related to yellow dust.

We next forecast the class of PMmean
10 with three methods: regression methods (Method 1), re-

gression methods with numeric labels (Method 2) and classification methods (Method 3). All of the
methods and models show good forecast performance by having a 0.2 misclassification rate. Among
the models, Randomforest has the best forecast performance. Randomforest in Method 2 also shows
low risky case which is “bad” and “very bad” are classified as “good” and “normal”. Therefore,
Randomforest with Method 2 is the best forecast model for PMmean

10 class.
In order to improve our model, we might consider other explanatory variables such as the daily

generation of thermal power plants and daily traffic data. For the classification analysis, we may
introduce asymmetric loss to find the best model which has a decision boundary to reflect that the loss
for risky cases is larger than less risky cases.
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