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Abstract
Forecasting the U.S. employment level is made using machine learning methods of the artificial neural net-

work: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big
data of the federal reserve economic data among which 105 important macroeconomic variables chosen by Mc-
Cracken and Ng (Journal of Business and Economic Statistics, 34, 574–589, 2016) are considered as predictors.
We investigate the influence of the two statistical issues of the dimension reduction and time series differencing
on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differ-
encing performs better than the autoregressive model and the dimension reduction improves long-term forecasts
and some short-term forecasts.

Keywords: employment forecast, deep neural network, differencing, dimension reduction, long
short term memory, gated recurrent unit

1. Introduction

Employment level plays an important role in making government labor policy, understanding the
overall economic conditions and planning business investment. Therefore, forecasting employment
level is crucial for government policy makers, investors, and many others. Accordingly, many studies
for it have been conducted, see Rapach and Strauss (2010, 2012), Siliverstovs (2013), Lehmann and
Weyh (2016) and many others for recent studies. The forecasting methods of these authors are based
on statistical or economic models, such as autoregressive integrated moving average (ARIMA) model,
vector autoregression and factor analysis. The recent hot applications of machine learning methods to
diverse statistical problems of classification and forecasting render us to consider the artificial neural
network (ANN), one of the machine learning methods, for employment level forecast.

ANN is an interesting forecasting method in that the method is capable of addressing a nonlin-
ear structure between the employment level and predictor variables without econometric intuition.
Substantial forecast efficiency gain will be demonstrated for the machine learning forecast of employ-
ment level using ANN methods of deep neural network (DNN), long short term memory (LSTM),
and gated recurrent unit (GRU) over the standard AR forecast if a big data approach is used with
a careful statistical consideration of dimension reduction and time series differencing. In ANN, in
order to handle more complex nonlinear relationships, two or more hidden layers are added and this
model is called DNN. However, DNN has limitations in that it does not address the serial dependence
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of most of economic time series. A recurrent neural network (RNN) is then proposed to address se-
rial dependence. Improved modifications of the RNN have appeared: the LSTM of Hochreiter and
Schmidhuber (1997) and GRU of Cho et al. (2014) are proposed. DNN and RNN have been used
for stock market forecasting in many recent studies: Arevalo et al. (2016) for US Apple stock price,
Chong (2017) for KOSPI returns, Chiang et al. (2016) for trading signal of the world 22 stock market
indices, and Qju et al. (2016) for Japan Nikkei 225 index return.

For the machine learning forecast methods of ANN for employment level, we consider the big
data of the federal reserve economic data (FRED) as predictors. The FRED is a huge big database
managed by the Federal Reserve Bank of St. Louis and is composed of more than 500,000 economic
time series related to banking, employment, population, and consumer price indexes.

The FRED is huge and contains unit root series. Therefore, we need to consider two statistical
issues of dimension reduction and time series differencing. McCracken and Ng (2016) choose 105
important macroeconomic variables among the over-500,000 variables in the FRED. They also pro-
vided background information for these important variables and the transformation method of each
series, such as degree of differencing and log transformation. The recommendation by McCracken
and Ng (2016) will be applied to machine learning forecasting of employment level.

We identify that consideration of the two statistical issues improves the forecast performance of
the ANN methods. Out-of-sample forecast comparison with a model confidence set (MCS) analysis
of Hansen et al. (2011) is conducted to compare the methods of (AR, DNN, LSTM, GRU) com-
bined with (differencing, non-differencing) and (dimension reduction, non-dimension reduction). The
comparison reveals that (LSTM, GRU) forecasts with differencing are substantially better than bench-
marking AR forecast and that dimension reduction improves long-term forecast and some short-term
forecast.

The remaining of the paper is organized as follows. Section 2 describes the FRED. Section 3
explains forecast methods. Section 4 makes an out-of-sample forecast comparison. Section 5 gives
the conclusion.

2. Federal reserve economic data

We consider the FRED in forecasting the U.S. monthly civilian employment level for the period of
01/01/1985–12/01/2018 of T = 408 months. The employment data set and the FRED data set can
be downloaded from the FRED website (https://fred.stlouisfed.org). In the website, the employment
level is defined to be “the number of persons of 16 years of age and older residing in the 50 U.S. states
and the District of Columbia, who are not inmates of institutions and who are not on active duty in
the Armed Forces”, see the FRED website for more details.

The FRED is a huge big database maintained by the Federal Reserve Bank of St. Louis. The FRED
are collected from global financial institutions and U.S. government agencies such as the U.S. Census
and Bureau of Labor Statistics. The database contains various categories of economic and financial
data: banking, employment and population, gross domestic product, interest rates, and consumer
price indexes. McCracken and Ng (2016) reduced the over-500,000-dimensional FRED, say XF , to
smaller dimensional data, say XMN, of important macroeconomic variables and discussed background
information of XMN. They also discussed transformation method of each series in XMN such as log
transformation and the degree of differencing by checking whether the series is I(0), I(1), or I(2). The
reduced data set XMN is also a big one containing K = 105 variables. As discussed by McCracken
and Ng (2016), the 105 variables XMN is chosen to satisfy the four criteria established by Stock and
Watson (1996) to include important macroeconomic categories of leading economic indicators and to
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Figure 1: Time series plots and ACF plots of the log employment level Yt and its difference ∆Yt. ACF =
autocorrelation function.

represent different broad categories of macroeconomic variables not selected. Therefore, the set of
reduced variables XMN is a good summary of the original huge big data XF including majority of the
important macroeconomic categories. We consider this reduced big data XMN to improve forecast of
log employment level, say Y , via machine learning.

The summary analysis by McCracken and Ng (2016) are mainly differencing and dimension re-
duction. When we use the reduced FRED big data XMN in forecasting the employment level, Y say,
the issue of differencing and dimension reduction is non-trivial because the big data set XMN contains
a large number of variables having different dynamics. For example, many variables in XMN have
one unit root, other variables have zero or two unit roots. We demonstrate that machine learning
forecast fails unless proper differencing is considered for XMN. Further reduction of XMN to XR will
be considered to show that dimension reduction matters in terms of forecast horizons. Let T be the
time series dimension and K = 105 be the number of variables in XMN. Then, Y = (Y1, . . . ,YT )′ and
XMN = (XMN

it , t = 1, . . . ,T, i = 1, . . . ,K)T×K .
We will briefly discuss what difference order will be considered for each element in Y and XMN.

The log employment level Yt is differenced by order one according to the following analysis. Figure
1 is the time series plots and the autocorrelation function (ACF) plots of original and differenced log
employment level. From the increasing trend in the figure and very slowly decreasing ACF, we can
identify a need for first-order differencing for the log employment level. The need is also confirmed
by the p-value = 0.26 of ADF test statistic with AIC order = 11 and time trend. We will use those
recommended by McCracken and Ng (2016) for the order di ∈ {0, 1, 2} of differencing of each series
XMN

it in XMN.

3. Forecast methods

We forecast the log employment level Y using machine learning methods of ANN for which we need
to consider two statistical issues of differencing and dimension reduction. We describe ANN forecast
methods in Section 3.1 and discuss the two issues in Sections 3.2 and 3.3.

3.1. Artificial neural network

The forecast methods based on ANN have received significant attention. ANN is one of the machine
learning methods inspired by biological neural networks. Keeping in mind of the implementation of
the ANN methods in Section 4 for forecasting Y from predictor X, we describe the key concept of
ANN learning. Let a data set {Xt = (X1t, . . . , XKt)′,Yt, t = 1, . . . ,T } be given for forecasting Y with
predictor X. ANN consists of an input layer receiving predictors Xt = (X1t, . . . , XKt)′, a hidden layer
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Figure 2: Artificial neural network model with K predictors, n hidden nodes and one output.

composed of hidden nodes, and an output layer giving forecast value Ŷt (Figure 2).
In ANN, forecasting is made through two step processes: first, the ANN transmits the nonlinear

function value of the linear combination of predictors received in the input nodes to each hidden
node, for example h1 = ϕ(

∑K
i=1 Wi1Xit + b1) = ϕ(W′1Xt + b1); second, the ANN transmits the nonlinear

function value of the linear combination Ŷt = g(
∑n

j=1 W joh j + bo) of hidden nodes to the output
node, which becomes a forecast value, where {Wi j,W jo}, {b1, bo} are real numbers called weights and
biases. The nonlinear functions ϕ, g are called activation functions such as tanh. Let {B1, . . . , Bm}
be a random partition of {1, . . . , T } which correspond to sets of time points of a partition of the data
having m batches {(Xt,Yt), t ∈ B j}, j = 1, . . . ,m. For example, if T = 380 and we choose batch size
20, we have m = 19 batches. The ANN gets learning from a sequence of batches {(Xt,Yt), t ∈ B j},
j = 1, . . . ,m by repeatedly updating the weights W and biases b to minimize a measure, loss function
such as mean squared error, of forecast error Yt − Ŷt, t ∈ B j, j = 1, . . . ,m. This learning procedure
from a given partition B1, . . . , Bm of {1, . . . ,T } makes an epoch. The learning procedure is repeated
with other random partitions of {1, . . . ,T } many times. The number of repetition is called the number
of epochs. In ANN, two or more hidden layers between input and output layers are added in order
to address more complex non-linear relationship between predictors and forecast, which is called a
DNN. In many cases, deeper NN shows better forecast performance, but not always.

However, DNN does not perform well for temporal data sets whose elements are serially correlated
as are the most economic time series data. The RNN is proposed for temporally-structured data to
address the serial dependence. In RNN, hidden node values have time-dependent nonlinear AR(1)
structure. When we use Xt as a predictor at time t, the value h1

t of a hidden node, node 1 say, is given
by

h1
t = ϕ

(
W′1Xt + U′1Ht−1 + b1

)
,

where ϕ is an activation function such as tanh, Ht−1 = (h1
t−1, . . . , h

n
t−1)′ is the vector of hidden state

values at time t − 1. U1 and W1 are also vectors of weights and b1 is a bias that will be updated
by machine learning. For Xt, we will consider XMN

t , ∆XMN
t , ∆XR

t , where XMN
t , XR

t are subvectors of
XMN, XR, respectively, corresponding to time t and ∆XMN

t and ∆XR
t are differences of XMN

t and XR
t ,

respectively. The hidden layer in the RNN has the role of remembering previous information, but it
cannot selectively remember the previous information. It makes all inputs at all times be remembered
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with the same weight and makes the effect of remote inputs disappearing rapidly (gradient vanishing)
or (exploding) like in stationary or explosive AR(1) models. LSTM of Hochreiter and Schmidhuber
(1997) and GRU of Cho et al. (2014) resolves the gradient vanishing and exploding problems of
RNN by adding the memory cell with (forget, input, and output) gates and (reset and update) gates,
respectively. We consider DNN, LSTM, and GRU as the forecasting method of the U.S. employment
level. See Section 4 for the implementations of the ANN methods.

3.2. Differencing

As discussed in Section 2, the FRED data sets include I(1) or I(2) series, which need to be differ-
enced. In the forecast based on statistical methods, the degree of differencing is an important issue. In
ARIMA forecasting, forecast (especially long-term) performance depends on the degree of differenc-
ing: long-term forecasts tend to be seriously biased toward the overall sample mean if a unit root of
a nonstationary data is estimated rather than specified. We will demonstrate that proper differencing
is more important in machine learning forecasting than in ARIMA forecasting: we have very bad
machine learning forecast if nonstationary data are not differenced. In the machine learning methods,
data-normalization is a crucial factor for good weight estimation in network learning, see Sola and
Sevilla (1997). The normalization improves network convergence speed of neural network algorithm
and avoids falling into local optimum by changing the range of values of all predictors to have a
common scale without a large difference. However, since mean and variance are not defined for non-
stationary series, normalization by sample mean and sample standard deviation would be unstable for
nonstationary series, hence not working good in machine learning forecasting as will be demonstrated
in Section 4.

3.3. Dimension reduction

We are interested in whether dimension reduction improves the machine learning forecast perfor-
mance. Accordingly, we consider a type of linear regression, the least absolute shrinkage and se-
lection operator (LASSO) regression which is widely used as a dimension reduction method, see for
example Tarassow (2019), Uniejewski et al. (2019), Cepni and Swanson (2019) and many others for
application in time series forecasting. Let T be the time series dimension of the data set. Dimension
reduction is made for XMN to XR, say, in view of forecasting YT+h − YT using ∆XMN

T . Let ∆h be the
operator such that ∆hYt = Yt − Yt−h. Let ∆ = ∆1 be the difference operator. In LASSO regression, the
LASSO coefficients for h-step ahead forecast ∆hYt+h = Yt+h − Yt are obtained by minimizing the sum
of squares of h-step forecast errors,

T∑
t=1

∆hYt+h − β0 −
K∑

i=1

∆di XMN
it βi

2

subject to
K∑

i=1

|βi| ≤ λ,

where XMN
it is the (i, t)th element of XMN and di ∈ {0, 1, 2} is the order of XMN

it identified by McCracken
and Ng (2016). The constraint

∑K
i=1 |βi| ≤ λ makes many coefficients of ∆XMN

it be zero reducing the
dimension K of XMN to a substantially smaller one (Table 1) below and preventing over-fitting of
the regression. We will demonstrate that dimension reduction improves long-term forecast and some
short-term forecast.

Table 1 shows predictors selected by LASSO regression for h = 1, 3, 6, 12 step forecasts. The
predictors selected three or more times in each step are related to the number of employees in spe-
cific industries (PAYEMS, MANEMP, and USFIRE) and to the number of housing units authorized
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Table 1: Predictors selected by LASSO

h-step Variables
1 PAYEMS SRVPRD CLF16OV USWTRADE DPCERA3M086SBEA
3 PAYEMS MANEMP USFIRE PERMITNE HOUST HOUSTMW NDMANEMP
6 PAYEMS MANEMP USFIRE PERMITNE USGOOD HOUSTMW HOUSTNE

TB3MS T5YFFM USWTRADE
12 PAYEMS MANEMP USFIRE PERMITNE HOUST HOUSTMW CES1021000001

EXSZUS T10YFFM USWTRADE USTPU USGOOD UMCSENT

Labor Market: PAYEMS = all employees for total nonfarm, SRVPRD = all employees for service-providing industries,
CLF16OV = civilian labor force, NDMANEMP = all employees for nondurable goods, USWTRADE = all employees for
wholesale trade, MANEMP = all employees for manufacturing, USFIRE = all employees for financial activities, USGOOD
= all employees for goods-producing industries, CES1021000001 = all employees for mining, USTPU = all employees for
trade, transportation and utilities; Orders and inventories: DPCERA3M086SBEA = real personal consumption expendi-
tures, UMCSENT = consumer sentiment index; Consumption and orders: HOUST = housing starts for total new privately
owned, PERMITNE = new private housing permits, northeast (SAAR), HOUSTMW = housing starts, midwest, HOUSTNE
= housing starts, northeast; Interest rate and exchange rates: TB3MS = 3-month treasury bill, T5YFFM = 5-year treasury
C minus fedfunds, EXSZUS = Switzerland/U.S. foreign exchange rate.

by building permits (PERMITNE and HOUSTMW). The table also shows that more predictors are
selected for long-term forecast than for short-term forecast.

4. Out-of-sample forecast

Focusing on the role of differencing and dimension reduction, we make on out-of-sample forecast
comparison of log employment level Y for some ANN methods and a benchmarking statistical method:
DNN, LSTM, GRU discussed in Section 2 and AR model. We demonstrate that the ANN methods of
LSTM and GRU have a better forecast performance than the benchmarking method of AR forecasting
if statistical issues of differencing and dimension reduction are properly addressed. The benchmarking
AR forecast is based on an AR(p) fitting to the differenced series ∆Yt

(1 − ϕ1B − · · · − ϕpBp)∆Yt = at, at ∼
(
0, σ2

)
, (4.1)

where B is backshift operator and p is selected by the Bayesian information criterion (BIC).
Let T be the data length. Out-of-sample forecasts are computed from expanding window samples

starting from t0 = 0.7T . The h-step ahead forecasts Ŷt+h|t, h = 1, 3, 6, 12 are computed from the
expanding window sample {(Xs,Ys), s = 1, . . . , t} for t = t0, . . . , T − h, where Xt is the vector of
predictors at time t. In AR(p) model, h-step out-of-sample forecast is recursively computed from (4.1).
Machine learning forecasts are computed by the ANN methods of DNN, LSTM, and GRU using all
non-differenced predictors Xt = XMN

t , all differenced predictors Xt = ∆XMN
t and dimension-reduced

differenced predictors Xt = ∆XR
t . Dimension reduction is made for each time t ∈ {t0, . . . ,T − h} and

for each h = 1, 3, 6, 12 by fitting LASSO regression of ∆hYt+h on {∆XMN
s , s = 1, . . . , t}. The reduced

predictors in Table 1 are for t = T − h. As measures of the forecast performance, we consider the root
mean square error (RMSE) and the mean absolute error (MAE),

RMSE =

√√√
1
M

T−h∑
t=t0

(
Yt+h − Ŷt+h|t

)2
, MAE =

1
M

T−h∑
t=t0

∣∣∣Yt+h − Ŷt+h|t
∣∣∣ , M = T − h − t0 + 1.

For each forecast method, efficiency gain relative to the benchmarking AR forecast is compared. For
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Table 2: The RMSE and the MAE efficiency gain (%) of the ANN forecasts relative to the AR forecasts and the
Diebold-Mariano test results

h-step AR(p)

ANN methods with ANN methods with
105 FRED predictors, XMN LASSO predictors

Non-differenced data, XMN Differenced data, ∆XMN Differenced data, ∆XR

DNN LSTM GRU DNN LSTM GRU DNN LSTM GRU

1 RMSE 0.0023 −97.3 −96.5 −96.3 1.9 −2.4 4.0 5.3 0.0 2.1
MAE 0.0018 −96.5 −97.0 −97.0 3.7 2.6 7.6 2.5 3.4 6.0

3 RMSE 0.0046 −92.2 −92.9 −93.3 −4.6 20.1 21.7 17.1 16.9 10.3
MAE 0.0031 −92.3 −94.8 −95.1 −4.8 14.8 17.1 3.3 13.9 3.0

6 RMSE 0.0071 −86.5 −89.3 −89.9 25.5 25.9 58.8 −2.6 50.7 35.0
MAE 0.0047 −88.6 −92.7 −92.8 16.3 24.5 48.4 −8.0 41.8 18.4

12 RMSE 0.0110 −85.2 −84.6 −85.8 36.7 47.2 38.7 40.3 60.0 50.5
MAE 0.0071 −88.0 −89.9 −90.5 16.4 36.4 29.2 21.3 45.6 31.7

Bold type is significant at 10% level by the Diebold Mariano test. RMSE = root mean square error; MAE = mean absolute
error; ANN = artificial neural network; AR = autoregressive; FRED = federal reserve economic data; LASSO = least
absolute shrinkage and selection operator; DNN = deep neural network; LSTM = long short term memory; GRU = gated
recurrent unit.

example, MAE efficiency gain of the DNN method relative to the AR method is

DNN MAE efficiency gain (%) =
(

MAE of the AR(p) forecast
MAE of the DNN forecast

− 1
)
× 100.

It means better forecast performance of one forecast model than AR(p) model if its efficiency gain is
greater than 0.

For the ANN forecasts described in Section 3.1, we need to specify the hyperparameters: learning
rate, optimization method, loss function, the number of epochs (e), batch size (b), the number of hid-
den nodes (n), the number of hidden layers (l), dropout rate, weight regularization. The optimization
method is chosen to be ‘Adam’ proposed by Kingma and Ba (2014), respectively, which are known
to give a good weight estimate in learning network among several recent methods, see Ruder (2016).
The loss function is set to mean squared error. The number of epochs, the number of repetitions for
network learning, is set to 500. The learning rate, the fraction of the weights being updated during
network learning, is set to 0.001 from the widely considered range (0.0001, 0.1). In order to pre-
vent overfitting in the ANN methods, we consider the most widely used 0.5 dropout rate and (L1, L2)
weight regularization. The dropout rate is the fraction of nodes whose inbound and outbound weights
are all randomly set to 0. The (L1, L2) weight regularization restricts the sums of |Wi j|, W2

i j to below
given numbers. We also consider batch normalization proposed by Ioffe and Szegedy (2015), which
has become an essential consideration for training acceleration and stable behavior of the gradients in
ANN methods, see Cooijmans et al. (2017), Laurent et al. (2016), and Santurkar et al. (2018).

For each h = 1, 3, 6, 12, the batch size (b), the numbers of nodes (n), and layers (l) are selected by
minimizing average of h-step out-of-sample forecast RMSE and MAE over the grid of {16, 32, 64} ×
{8, 16, 32, 64} × {1, 2, 3} for LSTM, GRU and the grid of {16, 32, 64} × {8, 16, 32, 64} × {1, 2, 3, 6, 9}
for DNN. Determination of hyperparameters by grid search is commonly considered in the literature,
see for example Kim and Baek (2019). Since Li et al. (2018) shows that the recurrent methods of
LSTM and GRU with four or more layers gives usually bad performance, we consider the number of
layers among {1, 2, 3}. For DNN, larger number of layers {1, 2, 3, 6, 9} are considered because DNN
is sometimes implemented with large l.

Table 2 shows the RMSE and the MAE efficiency gains of the ANN forecasts relative to the
AR forecast. ANN forecasts based on differenced predictors gain efficiency over the AR forecast,
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Table 3: The forecasting MCS performance: p-value (rank) of the MCS test

h-step AR(p)

ANN methods with ANN methods with
105 FRED predictors, XMN LASSO predictors

Non-differenced data, XMN Differenced data, ∆XMN Differenced data, ∆XR

DNN LSTM GRU DNN LSTM GRU DNN LSTM GRU

1 RMSE 0.98(5) 0.00 0.00 0.00 1.00(4) 0.94(7) 1.00(2) 1.00(1) 0.96(6) 1.00(3)
MAE 0.28(7) 0.00 0.00 0.00 0.99(3) 0.91(5) 1.00(1) 0.96(4) 0.90(6) 1.00(2)

3 RMSE 0.34(6) 0.00 0.00 0.00 0.20(7) 1.00(2) 1.00(1) 1.00(3) 0.99(4) 0.49(5)
MAE 0.12(5) 0.00 0.00 0.00 0.03(7) 1.00(2) 1.00(1) 0.05(6) 1.00(3) 0.18(4)

6 RMSE 0.40(4) 0.00 0.00 0.00 0.29(5) 0.84(3) 1.00(1) 0.00 0.97(2) 0.06(6)
MAE 0.07(5) 0.00 0.00 0.00 0.14(4) 0.70(3) 1.00(1) 0.00 0.98(2) 0.00

12 RMSE 0.70(5) 0.00 0.00 0.00 0.12(7) 0.98(2) 0.71(4) 0.12(6) 1.00(1) 0.71(3)
MAE 0.13(5) 0.00 0.00 0.00 0.11(6) 0.99(2) 0.70(3) 0.10(7) 1.00(1) 0.57(4)

MCS = model confidence set; ANN = artificial neural network; FRED = federal reserve economic data; LASSO = least
absolute shrinkage and selection operator; AR = autoregressive; DNN = deep neural network; LSTM = long short term
memory; GRU = gated recurrent unit; RMSE = root mean square error; MAE = mean absolute error.

while those based on non-differenced predictors lose substantial gains. We find that, for 1, 3, 6 step
forecasts, the GRU method with all the 105 FRED differenced predictors ∆XMN is the best; for 12
step forecast, LSTM with differenced LASSO predictors ∆XR is the best. For all the three ANN
methods, the dimension reduction improves forecast performances of the longer-term forecast, 12-
step forecast, and of some shorter-term forecasts of h = 1, 3, 6. We also identify that the GRU and
LSTM methods tend to perform substantially better than the DNN method. The reason is that the
significant autocorrelation of ∆Yt depicted in Figure 1 is properly addressed by the recurrent structure
of GRU and LSTM, but is neglected by DNN.

From the efficiency gain of the ANN forecasts based on the non-differenced data XMN, we see
the ANN forecasts based on XMN are very worse than the AR forecasts as well as the ANN forecasts
based on the differenced data ∆XMN.

In the table, we check statistical significances of the efficiency gain by the test of Diebold and
Mariano (1995). The DM test, for example for RMSE efficiency gain, is the t-test for the equality of
the mean of the squared forecast error of an ANN method and that of AR(p) method in which serial
correlations of forecast errors are addressed by the heteroscedasticity and autocorrelation consistent
(HAC) standard error of the sample mean difference. The DM test shows that the LSTM and GRU
methods have significantly better forecast performance than the AR method for some h. We also
identify that the ANN methods based on non-differenced predictor XMN has a significantly worse
forecast performance than the AR forecast.

For more formal comparison, we make a MCS analysis of Hansen et al. (2011) at a given level of
confidence α = 0.05. The MCS is a set of one or more models with a good forecast performance and
is constructed by multiple comparison under the assumption that there is no true model. The MCS
provides forecasting performance rank and p-value, the latter of which is the probability of the model
being contained in the MCS. Table 3 reports the result of MCS analysis. The table shows a results
similar to that of Table 2. The GRU method with all 105 differenced predictors ∆XMN has p-value of
1.00 and is mostly ranked 1 for all short-term forecast, 1, 3, 6 steps. The LSTM model with dimension
reduced differenced predictors ∆XR has p-value 1.00 and is ranked 1 for long-term forecast, 12 steps.
ANN methods based on non-differenced data XMN has p-values close to zero, indicating poor forecast
performance. Therefore, the MCS analysis shows that, for h = 1, 3, 6 forecasts, GRU with ∆XMN is
the best and, for h = 12 forecast, LSTM with ∆XR is best.
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5. Conclusion

In forecasting the U.S. employment level, machine learning methods of DNN, LSTM, and GRU are
considered. The predictors are chosen to be the 105 important macroeconomic variables selected by
McCracken and Ng (2016) among the big data of the FRED. We consider the two statistical issues of
dimension reduction and time series differencing in the machine learning forecast. An out-of-sample
comparison shows substantial efficiency gain for the machine learning forecasts over the AR forecast
if proper differencing is considered. The comparison reveals that, for h = 1, 3, 6 step forecasts, the
GRU method with all the 105 FRED differenced predictors is the best and, for 12 step forecast,
LSTM with differenced and dimension reduced predictors is the best. We also find that the dimension
reduction improves long-term forecast of h = 12 and some short-term forecast of h = 1, 3, 6.
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