• 제목/요약/키워드: time series distance function

검색결과 26건 처리시간 0.021초

DYNAMIC TIME WARPING FOR EFFICIENT RANGE QUERY

  • Long Chuyu Li;Jin Sungbo Seo;Ryu Keun Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.294-297
    • /
    • 2005
  • Time series are comprehensively appeared and developed in many applications, ranging from science and technology to business and entertainrilent. Similarity search under time warping has attracted much interest between the time series in the large sequence databases. DTW (Dynamic Time Warping) is a robust distance measure and is superior to Euclidean distance for time series, allowing similarity matching although one of the sequences can elastic shift along the time axis. Nevertheless, it is more unfortunate that DTW has a quadratic time. Simultaneously the false dismissals are come forth since DTW distance does not satisfy the triangular inequality. In this paper, we propose an efficient range query algorithmbased on a new similarity search method under time warping. When our range query applies for this method, it can remove the significant non-qualify time series as early as possible before computing the accuracy DTW distance. Hence, it speeds up the calculation time and reduces the number of scanning the time series. Guaranteeing no false dismissals, the lower bounding function is advised that consistently underestimate the DTW distance and satisfy the triangular inequality. Through the experimental result, our range query algorithm outperforms the existing others.

  • PDF

임베디드 센서를 위한 시계열 예측 기반 실시간 오류 검출 기법 (Real-time Error Detection Based on Time Series Prediction for Embedded Sensors)

  • 김형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.11-21
    • /
    • 2011
  • 임베디드 센서는 낮은 전력량과 신호의 세기로 장애물이나 거리와 같은 공간 환경에 많은 영향을 받으며, 이러한 원인들로 인해 임베디드 센서에서는 노이즈 데이터가 빈번히 발생한다. 임베디드 센서에서 획득하는 정보는 시계열 데이터로 존재하기 때문에 지속적으로 발생하는 시계열 정보에 대한 오류 검출을 실시간적으로 수행하기는 어렵다. 본 논문에서는 임베디드 장치의 물리적 특성을 고려하여 실시간적으로 발생하는 임베디드 센서의 오류 신호를 검출하는 시계열 예측 기반 오류 검출 기법을 제안한다. 본 논문에서 제안한 시계열 예측 기반 오류 검출 기법은 안정 구간 함수를이용하여 현재 발생하는 임베디드장치 신호의 오류를 판단한다. 안정 구간 함수는 임베디드장치 신호를 관측하여 오류 검출을 수행할 때 최근의 신호들에 오류 가중화를 적용함으로써 효과적으로 오류 신호를 탐지할 수 있다. 본 논문에서 제안한 기법을 Intel Lab 신호를 이용하여 실험하였으며, 실험에서 본 논문에서 제안한 기법은 중심이동평균 기법에 비해 26.25%의 정확도 향상을 나타내었다.

다변량 시계열 자료를 이용한 부정맥 예측 (Prediction of arrhythmia using multivariate time series data)

  • 이민혜;노호석
    • 응용통계연구
    • /
    • 제32권5호
    • /
    • pp.671-681
    • /
    • 2019
  • 최근에 부정맥 환자가 증가하면서 머신러닝을 이용한 부정맥을 예측하는 연구가 활발하게 진행되고 있다. 기존의 많은 연구들은 특정한 시점의 RR 간격 데이터에서 추출한 특징변수 다변량 데이터에 기반하여 부정맥을 예측하였다. 본 연구에서는 심장 상태가 시간에 따라 변해가는 패턴도 부정맥 예측에 중요한 정보가 될 수 있다고 생각하여 일정한 시간 간격을 두고 특징변수의 다변량 벡터를 추출하여 쌓음으써 얻어지는 다변량 시계열 데이터로 부정맥을 예측하는 것의 유용성에 대해 살펴보았다. 1-Nearest Neighbor 방법과 그것을 앙상블(ensemble)한 learner를 중심으로 비교했을 경우 시계열의 특징을 고려한 적절한 시계열 거리함수를 선택하여 시계열 정보를 활용한 다변량 시계열 데이터 기반 방법의 분류 성능이 더 좋게 나오는 것을 확인하였다.

타임 워핑 하의 효율적인 시계열 서브시퀀스 매칭을 위한 접두어 질의 기법의 확장 (On Extending the Prefix-Querying Method for Efficient Time-Series Subsequence Matching Under Time Warping)

  • 장병철;김상욱;차재혁
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.357-368
    • /
    • 2006
  • 본 논문에서는 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 방법에 대하여 논의한다. 타임 워핑은 시퀀스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀀스들을 찾을 수 있도록 해 주는 변환이다. 접두어 질의 기법(prefix-querying method)는 착오 기각 없이 타임 워핑 하의 시계열 서브시퀀스 매칭을 처리하는 인덱스를 이용한 최초의 방식이다. 이 방법은 사용자가 질의를 편리하게 작성하도록 하기 위하여 기본 거리함수로서 $L_{\infty}$를 사용한다. 본 논문에서는 $L_{\infty}$ 대신 타임 워핑 하의 시계열 서브시퀀스 매칭에서 기본 거리 함수로서 가장 널리 사용되는 $L_1$을 적용할 수 있도록 접두어 질의를 확장한다. 또한, 제안된 기법으로 타임 워핑 하의 시계열 서브시퀀스 매칭을 수행하는 경우 착오 기각(false dismissal)이 발생하지 않음을 이론적으로 증명한다. 다양한 실험을 통한 성능 평가를 통하여 본 연구에서 제시하는 기법의 우수성을 검증한다. 실험 결과에 의하면, 제안된 기법은 가장 좋은 성능을 보이는 기존의 기법과 비교하여 매우 뛰어난 성능 개선 효과를 보이는 것으로 나타났다.

창원시 대산면 강변충적층의 지하수위, 하천수위, 강수량의 관련성 연구

  • 정재열;함세영;김형수;차용훈;장성
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.447-450
    • /
    • 2004
  • This study was conducted to characterize groundwater and river-water fluctuations at a riverbank filtration site in Daesan-myeon adjacent to the Nakdong River, using time series analysis. Water levels from six observation wells from January 2003 to October 2003 were measured. The autocorrelation analysis indicates that the wells are divided into three groups: group 1 represents strong linearity and memory, group 2 intermediate linearity and memory, and group 3 weak linearity and memory. The analysis indicates that groundwater levels in different monitoring wells vary in response to river-water levels, groundwater withdrawal and seasonal rainfall. Cross-correlation was also divided into three groups. Group 1 shows the highest cross-correlation function (0.49 - 0.54) for a lag time of 0 hours, group 2 intermediate cross-correlation function (0.34 - 0.45), and group 3 the lowest cross-correlation function (0.23 - 0.25). Different cross-correlation functions among the 3 groups are interpreted as an effect of tile distance from the river to the pumping wells.

  • PDF

Developed empirical model for simulation of time-varying frequency in earthquake ground motion

  • Yu, Ruifang;Yuan, Meiqiao;Yu, Yanxiang
    • Earthquakes and Structures
    • /
    • 제8권6호
    • /
    • pp.1463-1480
    • /
    • 2015
  • This research aims to develop an empirical model for simulation of time-varying frequency in earthquake ground motion so as to be used easily in engineering applications. Briefly, 10545 recordings of the Next Generation Attenuation (NGA) global database of accelerograms from shallow crustal earthquakes are selected and binned by magnitude, distance and site condition. Then the wavelet spectrum of each acceleration record is calculated by using one-dimensional continuous wavelet transform, and the frequencies corresponding to the maximum values of the wavelet spectrum at a series of sampling time, named predominant frequencies, are extracted to analyze the variation of frequency content of seismic ground motions in time. And the time-variation of the predominant frequencies of 178 magnitude-distance-site bins for different directions are obtained by calculating the mean square root of predominant frequencies within a bin. The exponential trigonometric function is then use to fit the data, which describes the predominant frequency of ground-motion as a function of time with model parameters given in tables for different magnitude, distance, site conditions and direction. Finally, a practical frequency-dependent amplitude envelope function is developed based on the time-varying frequency derived in this paper, which has clear statistical parameters and can emphasize the effect of low-frequency components on later seismic action. The results illustrate that the time-varying predominant frequency can preferably reflect the non-stationarity of the frequency content in earthquake ground motions and that empirical models given in this paper facilitates the simulation of ground motions.

정상 시계열에서의 이상치 발견과 시계열 모형구축 (Outlier detection and time series modelling in the stationary time series)

  • 이종협;최기헌
    • 응용통계연구
    • /
    • 제5권2호
    • /
    • pp.139-156
    • /
    • 1992
  • 최근에 시계열에서의 이상치 발견을 위한 여러 가지 반복적인 방법들이 소개되었으나 이들 대부분은 시계열의 기저모형이 알려져 있거나 식별될 수 있다는 가정하에서 개발되었다. 그 렇지만 실제로 이상치들이 모형식별을 왜곡 시키거나 심지어는 불가능하게 만드는 경우가 발생한다. 본 논문에서는 두 개의 시계열 관측치 사이의 거리에 근거한 새로운 척도를 이용 한 이상치 탐색 방법을 제시하였다. 특히 이방법은 이상치를 발견하는데 시계열 모형에 의 존하지 않는다. 제안된 통계량에 대한 여러 가지 성질을 밝혔으며 이상치의 형태를 구별하 기 위해 전이함수모형을 이용하였다. 그밖에 이상치를 포함하고 있는 시계열의 모형을 구축 하기 위한 반복적인 절차를 제안했다.

  • PDF

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • 제33권4호
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

A Kullback-Leibler divergence based comparison of approximate Bayesian estimations of ARMA models

  • Amin, Ayman A
    • Communications for Statistical Applications and Methods
    • /
    • 제29권4호
    • /
    • pp.471-486
    • /
    • 2022
  • Autoregressive moving average (ARMA) models involve nonlinearity in the model coefficients because of unobserved lagged errors, which complicates the likelihood function and makes the posterior density analytically intractable. In order to overcome this problem of posterior analysis, some approximation methods have been proposed in literature. In this paper we first review the main analytic approximations proposed to approximate the posterior density of ARMA models to be analytically tractable, which include Newbold, Zellner-Reynolds, and Broemeling-Shaarawy approximations. We then use the Kullback-Leibler divergence to study the relation between these three analytic approximations and to measure the distance between their derived approximate posteriors for ARMA models. In addition, we evaluate the impact of the approximate posteriors distance in Bayesian estimates of mean and precision of the model coefficients by generating a large number of Monte Carlo simulations from the approximate posteriors. Simulation study results show that the approximate posteriors of Newbold and Zellner-Reynolds are very close to each other, and their estimates have higher precision compared to those of Broemeling-Shaarawy approximation. Same results are obtained from the application to real-world time series datasets.

COVID-19 전후 도시철도 승차인원 시계열 군집분석을 통한 역세권 군집별 대응방안 고찰 (A Study on the Response Plan by Station Area Cluster through Time Series Analysis of Urban Rail Riders Before and After COVID-19)

  • 리청시;정헌영
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.363-370
    • /
    • 2023
  • COVID-19 (Coronavirus disease 2019) 확산으로 2020년 초부터 도시철도 등 대중교통수단의 이용량이 크게 변동하였다. 이에 본 연구에서는 COVID-19 이전과 COVID-19 확산 이후, 3년 동안 도시철도 역별 일별 시계열 자료를 수집하여 DTW (Dynamic Time Warping) 거리법을 통해 시계열 군집분석 유사도를 평가하여 군집 별 회귀 중앙치를 도출하고, COVID-19 등 여러 외부 사건이 이용객 수의 변동에 미치는 영향을 시계열 충격 탐지 함수(Outlier Detection)로 진단하였다. 또한 도시철도 역의 군집 별 이용 특성을 분석하고 또한 외부 충격에 따른 승객량의 변동을 파악하였다. 향후 COVID-19 재확산 시 이용량의 유지와 회복에 대한 방안을 검토하는 데 목적을 두었다.