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Outlier Detection and Time Series Modelling
in the Stationary Time Series!)

Jong-Hyup Lee?) and Ki-Heon Choi2)

< Abstract >

Recently several authors have introduced iterative methods for detecting time
series outliers. Most of these methods are developed under the assumption that an
underlying outlier-free model is known or can be identified. Since outliers can
distort model identification or even make it impossible, we propose in this article a
model independent procedure for detecting outliers. The proposed procedure begins
with a descriptive data analysis of a time series using distance measures between
two observations. Properties of the proposed test statistic are presented. To
distinguish the type of an outlier are used transfer function models. An empirical
example is given to illustrate the time series modeling procedure.

1. INTRODUCTION

Time series observations are often affected by unexpected events like Korean
War, War in the Gulf, unusual changes in weather, and so on. Aberrant
observations, which are the consequences of these interruptive events, are
inconsistent with the rest of the series and are referred to as outliers. Since
outliers are known to wreak havoc in time series analysis and make the resultant
inference unreliable or even invalid, procedures are needed which can detect and
hence remove such outlier effects. One of the first contributors to this problem is
Fox(1972), who introduced two types of outliers. The first one consists of an
outlier that affects only a single observation, and he referred it as an additive
outlier (AO), or a Type I outlier. The second one corresponds to an outlier which
affects not only a particular observation but also other subsequent observations,
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and he referred it as an innovational outlier (I0), or a Type II outlier.
Let X: be a discrete time series which follows an autoregressive moving
average(ARMA) model of order (p,q),

o(B)X,=6(B)a, (1.1)
where ¢(B)=1-¢B- - —¢,B” and 8(B)=1-06,B- 8,87 are polynomials in B, B
is the backshift operator such that BX.=X;-1, and a.; is a Gaussian process of

iid. continuous random variables with mean zero and variance o2. We shall
require that all the zeros of ¢(B) and 6(B) lie outside the unit circle, and also
that ¢(B) and 6(B) have no common factors. In what follows, X, will be used

as the outlier—free stationary time series.
Let Z: be the observed time series. If we assume a single outlier at time T,
then the model of Z; can be written as

Z;=X;+0)I;(T) (1.2)
for an AO. For an IO, the model of Z: can be written as
Z,=X+ { w8(B)/¢o(B) } I(T) (1.3)

Here, X: is the outlier—free time series in the model (1.1), @ represents the
magnitude of the outlier, and
1 ifs=T
0 otherwise

l,(T)=[

is an indicator signifying the time occurrence of the outlier.

Following Fox(1972), several authors proposed different approaches to resolve
outlier problems. For example, Abraham and Box (1979) proposed a Bayesian
method, Denby and Martin (1979) introduced a robust estimation procedure, and
Chang, Tiao, and Chen (1988) suggested an iterative maximum likelihood method.
Other studies include Tsay (1986) and Muirhead (1986). One common assumption
in these studies is that the underlying outlier—free model of X: is known, or can
be identified from the observed time series Z:. However, in practice, the model of
X, is rarely known, and its identification through Z; is often distorted due to the
effect of outliers.

A test statistic for detecting outliers is developed in Section 2. Section 3
discusses the properties of the test statistic. Section 4 present an iterative
modeling procedure based on a model independent detection method. The proposed
procedure is then applied to an empirical example in Section 5. Finally some
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concluding remarks are given in Section 6.

2. DEVELOPMENT OF A TEST STATISTIC FOR OUTLIER
DETECTION

Both models (1.2) and (1.3) can be regarded as special cases of the following
mean shift model ‘

Zi=X+8(1) (2.1)
where X: is a transformed covariance stationary process and £(t) is a possible
time dependent mean function. The additive and innovational outliers are a
one—time shock which can be applied either directly to the observation or to the
innovations of the process. In the AO case, the observed time series of n
observations contains the set

{ Xy, Xr-1,Xr+0,X141, ", Xa }
Similarly, in IO case, the observed time series contains the following set
{ Xy, Xr-1,Xr+0, X101+ 001, Xa+@0u-1} .

where the o; are the generating weights of the process, i.e, w(B)=6(B)/¢(B) =
1+01B+0zB%+ . When one begins with a set of time series data, one has no
idea about the underlying outlier-free model. Therefore a reasonable method to
check a possible outlier in a series is to examine the distances between adjacent
observations, i.e., Di(t) = Z, - Z, for t = 2, -+, n. If indeed the series contains
an AQ, then from (1.2) we get

X;-Xg-l if t#T,T“"l
Xr-Xr1+e if t=T (2.2)
Xri1—-Xr-0 if t=T+1

Di(t)=2,-2, ;=

Likewise, if the series contains an IO, then from (1.3) we have

Xi—X:1 if 25t<T~-1

XT—-XT_1+&) lf t=T (23)
X:-X1_1+0)((03—T—(Dg-1—1) if T+1<+tSn

Dl(t) =Zi~Zy 1=

where ¢o=1. On the other hand, if there is no outlier in the series, we have
D\(t)=2Z,~Z,-1=X,-X,-1 for t=2,3,,n. Equation (2.2) implies that if Z: is
contaminated by an AQO at time T, then the distance measures at time T and
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T+1, ie., Di(T) and Di(T+1) will be increased or decreased by the magnitude of
the outlier w. When Z: is contaminated by an IO at time T, the behavior of Di(t)
is different. Di(T) still reflects the effect of an outlier v, as shown in (2.3). But
Di(t) for t2T+1 contains the outlier effect w through its interaction with the ¢
weights of the generating mechanism of the underlying outlier-free process. This
difference is useful in distinguishing the type of outlier.

However, there is a problem in using only Di(t) in (2.2) and (2.3); unless (Xt
— Xr-1) and w are of the same sign, the cancellation effect may result in a small
value of Di(t) at time T, which will obscure the detection of outliers. This leads
us to consider more generally the distance measure of observations ! periods
apart,

D[(t)ZZ,—Z,-g (24)
For a series with an AO at time T, we have
X;-Xg_l if t#T,T+l
D[(t)=Zg—Z;_1= Xr—Xgq+e if t=T (25)

Xrei—Xr—-0 if t=T+l

and for a series with an IO at time T, we have

Xg—X;_[ if l+1<+tST"1

Xr—-Xr_1+o if t=T (26)
Xi—Xii+0(0i-1-0;-7-) if T+1<t<n ,

D(t)=2,~2Z,-=

where ;-0 for j<0 and ©o=1. The behavior of D,(t) in (2.5) and (2.6) is similar
to that of Di«(¢) in (2.2) and (2.3). However, the simultaneous use of Di(t) for
1=1,2,3 will minimize the chance of the above mentioned cancellation effect. In
addition, the different behavior of D(¢) for I= 1,23 in the AO and IO cases is
useful in distinguishing the type of outlier. Since the value of Di(f) can be
either positive or negative, the absolute value of Di(t) is considered.

The other problem with the Di(#) is that they are unit dependent. Thus a
standardization is needed. The expectation of D,(t#) is known to be zero. So let
D1 i IDD|= B2, IDi(e)

D/ (#)= 2.7
0 if IDI(B) = HBK,IDi(1)] .
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Then, we consider the following standardized measure of distances:
Di(t)=Di(8)/S: , (2.8)

where S:=(’A§’;ID/(I)2/m)V2 and m=n-1 .

Summarizing the previous discussions, we conclude the followings:
(1) If the series contains an AO at time T, then the value of |Di(¢)| are

relatively large at t=T and t=T+! for some I = 1, 2, or 3.
(2) If the series contains an IO at time T, then the values of |Di(t)| for ¢t>T are

all affected, and the maximum value of |Di(#)| occurs at t=T, for some I= 1,
2, or 3.

Therefore, for detecting outliers, we will use the following maximum absolute

values of Di(t) as a test statistic:

M= 92X IDi(r)] , for 1=1,2,3. (2.9)

An outlier will be declared if the value of M; is large.

3. PROPERTIES OF THE TEST STATISTIC

To perform the test we need to know the sampling behavior of the test statistic
M; under the null hypothesis that there is no outlier. The derivation of the exact

sampling distribution of M, is difficult, but for large samples we can consider the
asymptotic distribution of M; .

We first consider the following lemma.
Lemma 1. Let W, be a Gaussian random variables with mean zero, variance

W) = i . s - Mmax _ sup Ly
one, and E(WiWj) = p(i,j) for all ij. Let M IStSnIW', and v. I'._jIanp(l.J)l

Jf v1<], and one of the following two conditions holds:
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M Xvi<o and

(ID) va(log .n) 2*°—0 for some 5>0, then
Pr {e:' (M-b,)<x} —exp(-e7*),
where - © <x<®, e,=(2logsn) Y% and

ba=2(logn)*-(8log ) V2(log .log & +log ).

Proof. see Deo(1972).

Suppose that X: follows a model in (1.1). Under the null hypothesis of no
outlier, model (2.1) becomes (1.1) and can be expressed as

X: =a;+01a;-1+028,-2+ =
= _Z(Djat—j ’
j=0
where W(B)=6(B)/¢(B)=1+¢1B+0zB%+ - such that Z'(,)w}<0° . Thus, Di(t) can
i

be written as
Dl(t) =X—X,

= Z(Dj(at-j"at-j—l) .
j=0

which has a normal distribution with
E[D;(t)]=0 .

Var[D(1)]=2 02;:0((012 - 0j0j.1) .

Cov[D(8),Di(t-k)]=- Uzjg.:.)( @OjOjek-1— 20,05k +Of0j+k+1) .

It follows that Di(t) is a stationary zero mean Gaussian process. Now
since Di(t) is the standardized variable of Di(t), Di(¢+) is also a Gaussian

process with E[Di(#)]=0 , Var[Di(#)]=1, and
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p(k) =E[Di()Dj(1-k)]

® (3.1
=-— j;()((l)j(l)j+k—l— 20,04k +ij,-+k+:)/21§)( 0F - 0j0j+1).

We summarize our discussion in the following lemma.
Lemma 2. Let X: be a outlier—free time series which follows an ARMA model

in (1.1). Let Dji(t) be the standardized variable of Di(t) given in (2.9). Then,

Di(t) is a Gaussian process with mean 0, variance 1, and correlation p(k) of
(3.1).

Using lemmas 1 and 2, we have the following theorem.

Theorem 1. For a given Gaussian process Di(t) in Lemma 2, let

M= %<aDi(t)] . Then

Pr {en' (Mi-bn)<x} —exp(-e™), (3.2)
where em=(2logam)™% | bn=(2logem) - (8logm) *+ (log .log #m+ log (n)

and m=n-1.

Proof. Clearly v1 < 1. We will prove this theorem by showing that the

condition (I) in Lemma 1 holds for the Gaussian process Di(¢)

Let vm= jyom lo(k)| . Note that

|j_zo((bjwj+k-l— 2004k +00jsk+1)| < j_zoi(‘)ﬂ)j+k—ll + ZJ_ZOI(mka +j;)‘wﬂj+k+l| (3.3)

By Schwarz' inequality,

IA

2 lomjre-i| { Z|®j|2} V2 _lej+k~l|2) vz
Jj=0 Jj=0 Jj=0

IA

ZE)I«D;I2<0°. since ;-0 for j<O0
I

Thus, each term in (3.3) is absolutely convergent for all k, and so is the
numerator of p(k). Now
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| Z(0F - 0001 < Tlof %+ Tlopjud < @
j=0 j=0 j=0

So, X(0f-0;0;.1) is absolutely convergent. Also 07> Somp.: . As a result,
p(k) is absolutely convergent for all k and the condition (I) holds.o

Therefore, under the null hypothesis that there is no outlier, Z: = X; and the
asymptotic distribution of M; is given as in Theorem 1. More specifically. let V

be a random variable associated with the limiting distribution of ey!(M;—bn). We
have from (3.2)

E(V) =I

R exp(-v-e_,)dv=- Io (log &v)e "dv=v( Euler ’s Constant)

and

Var(V)= _[:nmvzexp(—v—e'")dv—*rz: x2/6 .

Hence, the corresponding asymptotic mean and variance of M; can be expressed

as
_ _v¥ 2log /- (log .log /n+log .n—2v)
E(M) = 2v 2log .m
and

Var(M;)=n%/12log m .
From the asymptotic distribution of M; given in (3.2), we can easily calculate the
upper tail significant points C.; such that
Pr(M;>Cy1)=a (3.4)

for I= 1, 2, 3 and various samples of size n.
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Table 1. Critical Values C, ; for M; obtained from the
asymptotic distribution given in (3.2)

n a c a,1 c a,2 c da,3
50 .05 3. 4058 3.4010 3. 3961
.01 3.9901 3.9868 3.9835
100 .05 3.5710 3.5686 3.5662
.01 4.1086 4.1069 4.1050
150 .05 3.6670 3. 6654 3.6638
.01 4,1822 4,1810 4.1798
200 .05 3.7346 3.7334 3.7322
.01 4, 2355 4.2346 4,2337
250 .05 3. 7866 3.7857 3.7848
.01 4,2773 4.2766 4,2758

4. TIME SERIES MODELING IN THE PRESENCE OF OUTLIERS

Given an observed time series Zi, Zz; -, Z,, we first consider the case of a
single outlier in the series. The detection procedure consists of the following
steps:

Step 1. Detect the existence of the outlier. For this, we first compute Di(t), S;,
Di*(t), and Mi. For a given n and a, an outlier is declared if M; > Co1. If M; is
not significant, we compute Da(t), Sz, D2'(t), and Mz, and then declare the
existence of an outlier if Mz 2 C,2. If Mz is not significant, we compute Ds(t),
Ss, Ds*(t), and M3, and then declare that there is an outlier in the series if Mz 2
Cua. If none of the M; for I = 1, 2 and 3 are significant, then we conclude that
there is no outlier in the series, and stop the detection procedure.

Step 2. Find the timing of the outlier. For a given [/, suppose that the
maximum M; occurs at time T. Then the contaminated observation will be either
Zr or Zr-; . Compute the sample mean of the Z: except Zt and Zr-,

Z = 3 Z/(n-2)
=T, T-1

Then, the timing of the outlier is T if |Z7- 7,|>llr-:— 7'| ; otherwise, the
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timing is (T-1).

Step 3. Determine the type of the outlier. For this, we first obtain a preliminary

outlier adjusted series. Let T be the timing of the outlier detected in Step 2. The

preliminary outlier adjusted series Z:" is obtained as follows:
Z - [ Z, if =T

Z,—mp if t=T (4.1)

3
where @p= "_ZID:( TV3 .

The reason for the above preliminary adjustment is that if the unknown outlier
is indeed an AQ, then according to equation (2.5), w, is an estimate of w. On the
other hand, if the unknown outlier ia an IO, then according to (2.6), w, will also
correctly adjust Z; at t = T. Although in the latter case, the use of w, will leave
Z. for t > T unadjusted, it will be detected in the next iteration. Now we treate
7 as an outlier—free time series and use it to identify the underlying outlier—free
model using the standard identification procedure. Based on Z:°, suppose that the
underlying outlier—free model is identified to be

o(B)X,=6(B)a, (4.2)

where ¢(B), 6(B), and the a. are defined as in (L.1). Having obtained model (4.2),
we note that (1.2) and (1.3) can be written as
Z,=oB(B)(T)+ { 8(B)/¢(B) | a, (4.3)

where 8(B) = 1 for an AO and 8(B) = 6(B) / ¢(B) for an IO. As a result, we
can determine the type of the outlier by fitting model (4.3) with B(B)=8(B)/o(B)
If none of the parameters in B(B) is significant, then the outlier at time T is
declared as an AO. On the other hand, if some of the parameters in 8(B), as well
as w, are significant, then the outlier is declared as an I0.

Step 4. Once the type of the outlier is determined, we can specify B(B),
re—estimate model (4.3), and obtain the modified outlier adjusted series.
Specifically, if the outlier is an AO, we can estimate

Z,=oal(T)+ ( 8(B)/0(B) | a: . (4.4)
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Let the estimate of @ be wa; the modified outlier adjusted series is given by

Z,=Z— ol (T). (4.5)
Similarly, if the outlier is an IO, we can estimate
Z,= | 8(B)/o(B) } (0 (T)+a,) (4.6)
and obtain the modified outlier adjusted series as
2,=Z,- (8(B)/¢(B) } ad(T) , (4.7)
where o is the estimate of o , ¢(B) = (1 -~ ¢:B - -~ — ¢,B") and

6(B) = (1 - 6B - -+ — 6,BY).

Cleraly, in practice, the number of outliers in the series is unknown. However,
by using the above obtained modified outlier adjusted series, Z:, as new
observations, we can repeat the Step 1 through Step 4 iteratively until no more
outliers are detected. More generally, if a total of k outliers are detected at times
T, +-+, Ty after k iterations, the final modified outlier adjusted series is given by

Zi= 2,V o B)IT) . (4.8)

Here 2, (k-1 is the modified outlier adjusted series obtained at Step 5 in iteration

(k-1), o is the estimate of w, 8x(B) = 1 for an AO and B(B) = 6(B) /¢(B) for an
I0. The unknown underlying outlier-free model will then be re-identified based

on Z, series using standard identification procedure, and the following model will
be used to re-estimate the outlier-free model in 6(B) and ¢(B). That is,

Zi= o BIL(T)+ 1 6(BYo(B) | a (49)

where 8i(B) = 1 for an AO and 8i(B) = 6(B)/#(B) for an IO.

5. AN EMPIRICAL EXAMPLE

We now illustrate the suggested iterative detection procedure by considering the
data of annual consumption of spirits in the united Kingdom from 1870 to 1938.
The model fitted by Prest(1949) for the spirits data is

Y:=2.14+0.69X 1, - 0.63X 3~ 0.00095¢ -0.00011(¢-35)%+ Z, , (5.1
where Y: is the annual per capita consumption of spirits, Xix and Xz are per
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capita income and price of spirits respectively, Z: is the residual series, and t is
an index of time defined by t = actual year — 1869.

Fuller (1976) found that the residual series Z: obtained from the time series
regression model (5.1) is correlated and suggested an AR(1) model for the series.
These could be shown by the sample autocorrelation function (SACF) and sample
partial autocorrelation function (SPACF) of Z: given in Table 2. The residual
mean square of Z; was found as .000417. Tsay (1986) re-analyzed this data by
using his iterative identification procedure and suggested an ARMA(1,1) model for
Z: with six outliers.

Table 2. SACF and ESACF of Z; in Model (5.1)

Lag 1 2 3 4 5 6 7 8 9 10 11 12

SACF .72 .46 .25 .15 .00 -.13 -.18 -.27 -.34 -.50 -.50 -.47
S.D. A2 17 019 19 19 19 .20 .20 .20 .21 .23 .24
Lag 1 2 3 4 5 6 7 8 9 10 11 12
SPACF .72 -.13 -.06 .05 -.18 -.12 .05 -.24 -.09 -.34 .02 -.15
S.D. A2 12 12 12 12 12 12 12 12 12 12 (12

We will treat the residual series Z: as an observed time series assuming that
the model (5.1) is adequate for the spirits data. In addition to other possible
outliers, we will also assume that an additive outlier occurs at t=20. That is, Zg
= - 053786 is changed to Zz = .53786 due to a typing error. The contaminated
series Z; for t = 1, -+, 69 is obtained from the SAS system.

The SACF and the extended sample autocorrelation function (ESACF) for this
contaminated series Z: are calculated and given in Table 3. Clearly, the
information of the SACF, shown in Table 2, is completely washed out by the
additive outlier Zz. The phenomenon is also true in the case of ESACF. This will
cause a serious difficulty in using any detecting procedure which depends on the
assumption that an outlier—free model can be identified.

Table 3. SACF anf ESACF of Z;

Lag 1 2 3 4 5 6 7 8 9 10 11 12
SACF -.00 .00 .00 -.02 -.04 -.06 -.04 -.03 -.03 .01 .03 .05
S.D. 20 12 12 12 (12 12 .12 .12 12 12 (12 12
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ESACF
P q 0 1 2 3 4 5 6 7 8 9
0 -.00 .00 .00 -.02 -.04 -.06 -.04 -03 -.03 .01
1 .15 .00 .00 -.01 -.00 -.02 -.00 .01 -.03 .01
2 -.16 .01 .00 -.00 .00 -.02 -.00 .00 -.02 .01
3 .03 .06 -.24 -01 -00 -.02 -01 -00 =02 .01
4 -.43 .09 .25 -.13 .00 -.01 .00 01 -1 .01
5 -. 47 .07 .22 -.16 -.12 -.02 .00 .01 -.00 -.00
6 -. 47 .01 -16 -.12 -.02 .00 .01 .01 -,00 .00

Indicator Symbols

AW BN - O
X X X OO0 O O
SO OO OO
SO OO OC
x OO0 o oo

SO OO OO OO0
CO DO O OO
SO0 OoOoO0OC
SO OO OCOoOOo
(==l leNel ]
SO OO O OO

However, our proposed method does not require an assumed underlying
outlier—free model to find an outlier. We now use the contaminated series Z: to
illustrate the procedure.

Step 1. We compute Di(t) for t = 2, -, 69, S1 = .072209, and D,’(t) for t=2,
---, 69. For n=69 and a = .05, we calculate Mi. Since Mi = 8.3990, which occurs
at time 20, is larger than Cges1 = 3.4823, which is obtained from equation (3.4),
we declare that there is an outlier in the series.

Step 2. To find the timing of the outlier, we note that Mi occurred at time 20.
Therefore the contaminated observation will be Zzx or Zis. We compute Z =

-.011472. Since |Zz- 7'| = 549332 >|Zo- _Z’I = ,049224, the timing of the
outlier is determined to be T = 20.

Step 3. The preliminary outlier adjusted series Z:* is obtained as follows:
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Z‘_{z, if =20
£ Zyp-wp if t=20

where

3
0p= l§1D¢(20)/3 = 587377 .

We treat Z"° as an outlier-free time series and then identify the underlying
outlier—free model using the standard identification procedure. From the SACF and
SPACF of Z given in Table 4, we entertain an AR(1) model. Employing model
(4.3) with 8(B) = I/(1- ¢ B), we estimate the @ and ¢, whose estimates are
5897(.0914) and -.0082(.0332), respectively. The values in the parenthesis denote
the standard error of each estimate. Since ¢ is not significant, we decide that the
outlier is an AO.

Table 4. SACF and SPACF of Z,* at Iteration 1

Lag 1 2 3 4 5 6 7 8 9 10 11 12
SACF .72 .46 .25 .15 .00 -.13 -.18 -.27 -.34 -.50 -.50 -.47
S.D. 12 17 .19 .19 19 (19 .20 .20 .20 .21 .23 .24
Lag 1 2 3 4 5 6 7 8 9 10 11 12
SPACF .72 -.13 -.06 .05 -.18 -.12 .05 -.24 -.09 -.34 .02 -.15
S.D. A2 0120 12 12 (12 12 12 12 12 .12 12 .12

Step 4. Having found an AO at time 20, we next estimate the following model
Z,=0al(T)+a,/(1-6¢B)
from which we obtain wa = .5833 and the modified outlier adjusted series

2—{Z' if 20
"\ Zp-0a if t=20

By using Z, as new observations, we repeat the Steps 1 through 4 until no more

outliers are detected. The detection procedure is terminated at iteration 5 since
none of the M; for I = 1,2,3 are significant. Totally, we detect four outliers at
times 20, 40, 46, and 49. The detailed results are given in Table 5.
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Table 5. Results of the Proposed Detecting Procedure

) M; Outlier
Iteration 1 S; C.os,1 t Value | time | type op
1 1 .0722 3. 4823 20 8. 3990 20 A0 .5874
2 1 .0192 3. 4823 40 4, 6849 40 10 [-.0845
3 1 .0164 3.4823 50 4,8297 49 A0 |-.0894
4 1 .0134 3.4823 46 4. 3208 46 - A0 . 0696

The modified outlier adjusted series obtained at Step 5 in iteration 4 is the final
outlier adjusted series Z. We now use it to re—identify the underlying

outlier—free model. The SACF and SPACF of Z, are given in Table 6.

Table 6. SACF and SPACF of Z,

Lag 1 2 3 4 5 6 7 8 9 10 11 12
SACF .84 .62 .41 .22 .07 -.04 -14 -23 -.29 -.34 -.36 -.37
S.D. 12 .19 .21 .23 .23 .23 .23 .23 .23 .24 .25 .25
Lag 1 2 3 4 5 6 7 8 9 10° 11 12
SPACF .84 -25 -13 -05 -.06 -.01 -.13 -11 -.02 -11 -.03 -.11
S.D. A2 12 12 12 12 12 12 120 12 12 12 .12

The results seem to suggest an AR(2) model. Therefore, the model for Z; becomes

Zi= ol +0ad[®/(1-5B) - ogl (™ (5.2)
+040{*® +a/(1-01B-02:8%) .

The maximum likelihood estimation results of model (5.2) using the SAS
system along with the corresponding residual sample autocorrelation functions
(RSACF) are shown in Table 7.

Table 7. Estimation of Results of Model (5.2)

Parameters ol 2 5 o3 o4 ol 02
Estimate .5888 -.0898 . 8035 .0468 -,0607 1.1934 -.3620
S.D. . 0073 .0110 . 0977 .0072 . 0074 .1210 . 1207
Lag 1 2 3 4 5 6 7 8 9 10 11 12
RSACF -.08 .01 .01 -.06 .02 .01 -.03 -.08 .06 -.02 .03 -.05
S.D. 12 012 12 12 12 12 (12 (12 .12 .12 .12 .12
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The residual autocorrelations indicate that the model is adequate. The residual
mean square is reduced to .000137, which is about one third of that of AR(1)
model suggested by Fuller(1976).

6. CONCLUDING REMARKS

We presented a procedure which does not depend on any assumed or identified
outlier—free model for detecting outliers in time series. The procedure begins with
an expository data analysis of time series using a simple concept of distance

measures. The proposed statistics Di(f), Di(1) and M are simple and their

computations are straightforward. The method can be also be applied easily to a
stationary seasonal time series with period = s by simply adding a seasonal lag

in computing Dj(¢). For example, we may compute Di(t) for =1, 2, s. The

procedure works well for numerous real and simulated series which we have tried.

The real value to this procedure is that it enables at each stage an independent
model—free check on a possible outlier that is conditioned on adjustment made for
outliers already discovered, but does not depend on the model for detection of the
next outlier.

We believe that it deserves consideration for use in time series outlier analysis,
particularly when outliers may obscure or even completely wash out the
information in sample identification statistics such as sample autocorrelation,
sample partial autocorrelation, and extended sample autocorrelation functions.
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