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ABSTRACT:

Time series are comprehensively appeared and developed in many applications, ranging from science and technology to
business and entertainment. Similarity search under time warping has attracted much interest between the time series in
the large sequence databases. DTW (Dynamic Time Warping) is a robust distance measure and is superior to Euclidean
distance for time series, allowing similarity matching although one of the sequences can elastic shift along the time axis.
Nevertheless, it is more unfortunate that DTW has a quadratic time. Simultaneously the false dismissals are come forth
since DTW distance does not satisfy the triangular inequality. In this paper, we propose an efficient range query algo-
rithm based on a new similarity search method under time warping. When our range query applies for this method, it
can remove the significant non-qualify time series as early as possible before computing the accuracy DTW distance.
Hence, it speeds up the calculation time and reduces the number of scanning the time series. Guaranteeing no false dis-
missals, the lower bounding function is advised that consistently underestimate the DTW distance and satisfy the trian-

gular inequality. Through the experimental result, our range query algorithm outperforms the existing others.
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1. INTRODUCTION

Time series is a ubiquitous form of data that appeared
and developed in virtually applications, such as science,
technology, business and entertainment. Similarity search
in time series database has attracted much interest. It is of
growing importance in many applications such as infor-
mation retrieval, bioinformatics, data mining and data
warehousing [3,6].

Similarity search always focused on two interesting
problems. The one is whole sequence matching [1,5,7,10,
11]. Another is subsequence matching [4]. Similarity
measure popularly used is the Euclidean distance [1,4,9]
between the subject sequences. Although it can be com-
puted relatively fast, it is not an intuitively effective dis-
tance measure due to its sensitivity to some outliers such
as amplitude scaling, offset translation and distortions in
the time axis. Dynamic time warping (DTW) [2,7] is a
much robust distance measure for time series, allowing
similarity matching although one of the sequences can
elastic shift alone the time axis. However, it is unfortunate
that DTW has a quadratic time. It fails to satisfy the trian-
gular inequality [10] so that false dismissals [1,4] come
forth. To overcome these limitations, previous researches
proposed some computationally cheap lower bounding
functions [5,7,8,10,11] instead of the calculation of the
DTW distance that can guarantee no false dismissals.

In this paper, we propose an efficient £ -range query al-
gorithm to operate the similarity search based on [8] in
that one k -nearest neighbor algorithm only was intro-
duced. It can speed up the calculation time of the DTW
distance and reduce the number of scanning the time se-
ries. Through experimental result, our range query algo-
rithm outperforms other existing approaches.

The rest of the paper is organized as follows. In Section
2, we will consider the background and related work. Sec-
tion 3 will describe the efficient £ -range query algorithm
proposed by us. In section 4 we will discuss the experi-
mental evaluation. Finally, in section 5 conclusions are
given.

2. BACKGROUND AND RELATED WORK

* We first summarize in table 1 a list of symbols used in
the rest of paper.

2.1 Dynamic Time Warping (DTW)

The standard definition of Dynamic Time Warping
(DTW) distance is as follows:
Definition 1: the DTW distance between two time series S,
Qis

Dy (S, Rest(Q)

Dpry (Rest(S),Q)
Dy (Rest(S), Rest(Q))

D, can be any of the distance function defined in [10]. -
From the NxM matrix we can get a warping path, W,
from cell (1,1) to (N, M) corresponds to a particular align-
ment, element by element, between S and 9 :

W=w,.,W,..,w,, max(n,m) < K<n+m-1.

W= (l’ J) > wk+1(i\! .1‘)

This warp path must satisfy two constraints that are
continuity (i'—/<1and j'—j<1) and monotonic (i'~i>0
and j-j>0).

We can use the cumulative distance a(7, j) as the matrix
distance d(i, /) in the current cell and the minimum of the
cumulative distance of the adjacent elements:

a(i, j)=d@, j) +min{a@, j~1),a@-1,j-D,a@ -1, /)}

Dy (S,0) = D, (First(S), First(Q)) +min
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Table 1. List of symbols.
Symbol Definition
S a data sequence
Q a query sequence
s, the j - ¢ element of the §
q thej - ;4 element of the O
& the tolerance in range query
5 the approximate segment sequence of §
D the j — ¢h segment in the §*%
/% max the maximum value of the; _ s segment
5/ .min the minimum value of the ; - segment
st the time interval of the §
o =
§2<254136978435 |

Q=<3,8375624,1> N
Warping matrix of S and Q

Figure 1. Illustrate the DTW. Left one is alignment of
two time series according to right warping matrix.

We can find the optimal warp path according to the

minimum warp cost. This process is illustrated in Figure 1.

2.2 Related Work

The database community has been researching prob-
lems in similarity query for time series databases for many
years. Agrawal dt al. [1] utilized the Discrete Fourier
Transform (DFT) to transform data from the time domain
into the frequency domain and used a R*-tree to index the
first few DFT coefficients. Yi et al. [10] first investigated
the DTW in large database that used FastMap technique to
approximate index the time series under dynamic time
warping distance but it is not able to guarantee no false
dismissal. Kim et al. [7] introduced the range query based
on proposed lower bounding function that is employed on
four features extracted from each time series that are first,
last, greatest and smallest elements.

Keogh [S] proposed another lower bounding function
and exact indexing of DTW, which was later optimized by
Zhu and Shasha [11]. The proposed lower bounding func-
tion guaranteed no false dismissals. Sakurai et al. [8] pro-
posed a2 new method FTW (Fast search method for dy-
namic Time Warping), which efficiently pruned a signifi-
cant nuimber of the search candidates to reduce the search
costs. They applied a k& -nearest neighbor search algo-
rithm during the similarity query processing. Utilizing this
method as a start point we propose an efficient ¢ -range
query algorithm under the time warping distance.

3. PROPOSED METHOD
3.1 Coarsening Computation

3.1.1 Approximate Segment Sequence

Considering the time complexity of DTW O(NM)
where lengths of two time series are N and M respectively,
it is an optimal method that we use the approximate seg-

s’ . max

$;.min

Figure 2. Approximate segment.

ment sequence of the time series to compute the DTW
distance between two time series especially for long se-
quences. First we divide one time series into several seg-
ments by the time interval (77 ) and this divided time se-
ries is called the approximate segment sequence S** that is

described as §** = {s;“’g,...,s,.""z} .

Every separated seg-

ment 5;* is denoted by its maximum value s*.max , mini-

mum value s*.min and time interval 5" as in Figure 2.

In terms to Figure 1 we can construct approximate seg-
ment sequences $™* and Q"% . We assume the time interval
is 3 (that is 77 =3). Instead of compute the exact DTW
distance between the time series SandQ using the D, ,
we can use a new lower bounding function D,,_,, to calcu-

late the approximate DTW distance of §** and Q™ .

Moreover the time complexity is reduced to O(—};{[ﬂz)_ .

3.1.2 A New Lower Bounding Function

Definition 2: The approximate DTW distance between
two approximate segment sequences S** , 0"* is:
Dy, 15(8%%, Q') = Dyl (First(S°%), First(Q™))

Dy 15(S™%, Rest(Q™))

Dy, 1 5(Rest(S™),0"%)
Dy, 5(Rest(S**), Rest(Q™ )
The cumulative distance (i, j) as the . matrix dis-
tance d°3(j, j) in the current cell and the minimum of the
cumulative distance of the adjacent elements:
B, j)=d**(,j) +min{B(, j-1), pE -1, ), B(i-1,j-D}
d*3, j)= min(s,.", qf' )x D% (57, q;.eg s
where D*%(5;*,q;* ) denotes the distance between s,
and g;* . As two approximate segment sequences, the dis-
tance between every segment can be obtained by follow-
ing formula:

+min

(s;%.min-g;*.max)’ s;*.min > ¢}¥ max
D (55%,4°%) =1{(¢;*.min— ;% .max)’ g;*.min> s

.max

0 (otherwise)

Theorem 1: For any two time series S and Q, % and
O’ are their approximate segment sequences, the follow-
ing inequality always holds.
Dy 15(S™%,0°F) < Dpry (S,Q) -

Due to the limitation of the space we omit this proof here.

So we can easily derive corollary from theorem that is:

Dy (S,Q) S = Dy _1,(S**,0%) <e.

This corollary implies that similarity search that uses
D,, ,, rather than D, in order to discard dissimilar
sequences does not incur false dismissals.
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Figure 3. Calculation of the DTW distance between

the approximate segment sequences S** and Q% .

Figure 5. Farther refine the time series and calculate
the approximate distance between S°* and O0*% .

Algorithm CC(S**,0°%,¢)
// Initialize every matrix cell as cell(i, _]
// n and m are the length of §°* and
for i=1 to n

for j=1 to m

cell(i, jy=oo

// wi and wj the coordmatlon of the element in the
/Iwarping path; d(i, j) is the distance value of cell(i, j)
//and it is computed by dynamxc programming

wi=l; wi=1; D, ;
whrle wi<n and w1<m do
Jmte d(wi,wj);
1, w1) min{d(wi, wj),d(wi —1,wj),d (wi, wj -~ 1)}
wr—l
if d(Wl wj —1) = min{d(wi, wj), d(wi - 1, wj),d(wi, wj - 1)}
wj=wj-1;

for i=wi to ':1
com ute d(i,w,
(}) /) (< J/)
1(i,wj
else break

for j=wj to m
compute d(wr ns

1fdw1 /m
Coetlons, = dw, )

nd)(t wi);

else break
//Compute the lower boundmg distance D,

/fand g ograte the range query.
D

of S°%

+d(wi,wj);
if D,
f)greak
wi= w1+l wi=wj+l;
if D,,<¢
rewmn D,

else return null ;

Figure 4. Coarsening Computation algorithm.

3.1.3 Coarsening Computation

To compute the DTW distance, every cell of the matrix
must be filled. Through reduce the calculation of the ma-
trix cells we can speed up the computation of the distance.
During the process of finding the warping path we can get
every element in this warping path and its coordinate
are wi and wj respectively. Beginning from cell(1,1) , every
element of the optimal warping path can be got in terms of
DTW definition and proposed the new lower bounding
function. As soon as getting a suitable element, we can fill
those matrix cells that start from the coordinate of this
element and lie in the row and column. After filling them,
the computed distance value of every cell is compared
with the value (i/n)*¢ (along the wi ) and (j/m)*e
(along the wj ) to determine whether all of the cell values
are computed. In the Figure 3, due tocell(1,2) =2 (2/3)x¢
we will not consider matrix cell(1,3) that is illustrated using
white cell. As a result we can get some white cells in one
matrix that do not need to compute. During excluding the
cells we also compute the approximate distance between
two approximate segment sequences using the optimal

Algorithm TI-RangeSearch (Q, €)
// ResultSet stored the candidate data sequence.
ResultSet = {}; compute A[Q];
foreach S € Database
compute A[S];
for i=x tol
D, =CC(5™,0%,8);

if D= null
break;
elseif i=1

put S into the ResultSet;
// Post-processing step '
foreach S € ResultSet
if Dppy(S,0)>¢
remove it from ResultSet;
return ResultSet;

Figure 6. TI-RangeSearch algorithm

warping path. In this process, we operate the range query
to confirm whether two sequences are similar simultane-
ously. It can save a lot of computed time that we do not
need to compute whole distance but partly distance. We
call this calculative process and range query as coarsening
computation. Our algorithm in the coarsening computation
process (called CC algorithm) is described in the Figure 4.

3.2 Refinement

In this paper we regard the time interval as the division
granularity. We always get the time interval that is as lar-
ger as possible. Then according to different refinement the
time interval will be decreased gradually. We can get
other time intervals are as following:

N>TI >TI ,>.>TI>1

We propose a data structure to store every time series in

the database. This data structure is a simple array that

stores the information of every approximate segment se-

quence divided by different time intervals. Hence
the § and Q are described as following: A
AS] ={(8=.11,), (8;*,TL,), ..., (S:*.11,)}

A9 ={(g.11),(g*. 1), ....,(&*.T,)}
After coarsening computation process is finished we
begin to the refinement process. Followed the Figure 3 if
the data sequence satisfies the condition D, (5'*,0"F) <
£, we will continue to refine this sequence using smaller
time interval (see Figure 5) and calculate the approximate
distance between two approximate segment sequences.

Then we operate the range query to verify whether

D, (5*%,0™*) < gis correct. Figure 6 describes oure -
range query algorithm, TI-RangeSearch, which uses the
array data structure.
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Figure 7. Candidate ratio using the Sunspot data set.
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Figure 8. Response time using the Sunspot data set.
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Figure 9. Response time using synthetic data set.

4. EXPERIMENTS

We applied two kinds of date set in our experiment:
Sunspot data set and synthetic data set. Sunspot data set
that is solar circles in the sunspot numbers every month
from January 1749 to July 1990 comes from http://xweb.
nrl.navy.mil/timeseries/multi.diskette. To evaluate the
superior performance of our range query algorithm, we
compared TI-RangeSearch that are indexed by the array
with the previous ones: TW-Sim-Search [7], Keogh-
RangeSearch [5] and Zhu-RangeSearch [11].

4.1 Candidate ratio and Response time

Candidate ratio is the important indicator of the filtering
effect of all kinds of range query algorithms.

. . the number of candidate time series
candidate ratio = f

the number of data time series

This ratio is the smaller the better. Our first experiment
compared the filtering effect of the four methods using the
Sunspot data set. Figure 7 described the results of the can-
didate ratio of four different methods. Our TI- RangSearch
outperforms other three methods.

Candidate ratio and response time are two indivisible
parts for overall experimental performance. Figure 8
showed the response time of the four methods for the Sun-
spot data set. Our method is better than other methods. As
a result, for overall performance the TI-RangeSearch is
best one among all methods.

To verify the scalability of all methods, we used the
synthetic data set in the following experiment due to not
large enough Sunspot data set. Our experiment increased
the number of the synthetic data set from 1,000 to 100,000,
Under the fixed tolerance £, the experimental result was
described in the Figure 9.

5. CONCLUSIONS

In this paper, we proposed an efficient £ -range query
algorithm under the time warping distance applied to [8].
Used our algorithm the non-qualify time series are pruned
as early as possible before computing the exact DTW dis-
tance. The computation time and quantity of time series
scanned in the large time series database are significantly
reduced during the calculation of the DTW distance. For
the new lower bounding function it satisfied the triangular
inequality, guaranteed no false dismissal and was proved
using one new method. Moreover the similarity search can
be applied between the different length time series. -

Through the experimental results our range query is su-
perior to other existing approaches. In the future, we plan
to further find a new method to calculate the DTW dis-
tance that is suitable with our range query algorithm.
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