• Title/Summary/Keyword: time scale

Search Result 8,025, Processing Time 0.041 seconds

Bandwidth Adjustment Techniques for MMOG in a Cloud-P2P Hybrid Architecture (클라우드와 P2P 하이브리드 구조의 MMOG를 위한 대역폭 조정 기법)

  • Jin-Hwan Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.55-61
    • /
    • 2024
  • In a hybrid architecture that combines the technological advantages of P2P(peer-to-peer) and cloud computing, it is possible to efficiently supply resources and allocate loads. In other words, by appropriately utilizing the processing power of the players constituting P2P as well as the server in the cloud computing environment, MMOG(Massively Multiplayer Online Game) can be configured that considers the scale of economic cost and service quality. In fact, the computing power and communication bandwidth of servers in the cloud are important demand-based resources. The more it is used when renting, the higher the cost, while the quality of service improves. On the other hand, if the player's processing power is utilized a lot, the quality of service deteriorates relatively while the economic cost decreases. In this paper, a bandwidth adjustment technique between servers and players for MMOG based on this hybrid structure is described. When the number of players running at the same time increases, the players' actions are appropriately distributed to servers and players to effectively utilize the server's computing power and communication volume. Simulation results show that in the MMOG based on cloud and P2P hybrid architecture, the bandwidth of the server is proportionally decreased as the bandwidth directly handled by players is increased.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

A Study on the Quality of Healthcare Services for Four Critical Illnesses and the Maintenance of Right to Protection and Dignity in a Senior General Hospital (상급종합병원의 4대 중증질환 의료 서비스 품질과 보호받을 권리 및 존엄성 유지에 관한 연구)

  • Woojin Lee;Minsuk Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.531-550
    • /
    • 2023
  • Purpose: The unique nature of life-and-death healthcare services sets them apart from other service industries. While many studies exist on the relationship between healthcare services and customer satisfaction, most of them focus on mildly ill patients, ignoring the differences between critically ill and non-seriously ill patients. This study discusses the actual quality of healthcare services for patients who are facing life-threatening illnesses and are on life support, as well as their right to protection and dignity. Methods: The survey conducted to 149 patients with the four major illnesses: cancer, heart disease, brain disease and rare and incurable disease, those who have experiences with senior general hospitals. Results: The basic statistics of this study are adequate to represent the four major critical illnesses, and the reliability and validity of this study's hypotheses, which were measured by multiple items, were analyzed, and the internal consistency was judged to be high. In addition, it was found that the convergent validity was good and the discriminant validity was also secured. When examining the goodness of fit of the hypotheses, the SRMR, which is the standardized root mean square of residuals that measures the difference between the covariance matrix of the data variables and the theoretical covariance matrix structure of the model, met the optimal criteria. Conclusion: The academic implications of this study are differentiated from other studies by moving away from evaluating the quality of healthcare services for mildly ill patients and focusing on the rights and dignity of patients with life-threatening illnesses in four senior general hospitals. In terms of academic implications, this study enriches the depth of related studies by demonstrating the right to protection and dignity as a factor of patient-centeredness based on physical environment quality, interaction quality, and outcome quality, which are presented as sub-factors of healthcare quality. We found that the three quality factors classified by Brady and Cronin (2001) are optimized for healthcare quality assessment and management, and that the results of patients' interaction quality assessment can be used to provide a comprehensive quality rating for hospitals. Health and human rights are inextricably linked, so assessing the degree to which rights and dignity are protected can be a superior and more comprehensive measurement tool than traditional health level measures for healthcare organizations. Practical implications: Improving the quality of the physical environment and the quality of outcomes is an important challenge for hospital managers who attract patients with life and death conditions, but given the scale and economics of time, money, and human inputs, improving the quality of interactions and defining them as performance indicators in hospital quality management is an efficient way to create maximum value in the short term.

Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration (CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토)

  • Woo-Dam SIM;Jung-Soo LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.

Prevalence of Inflammatory Bowel Disease Unclassified, as Estimated Using the Revised Porto Criteria, among Korean Pediatric Patients with Inflammatory Bowel Disease

  • Sung Hee Lee;Minsoo Shin;Seo Hee Kim;Seong Pyo Kim;Hyung-Jin Yoon;Yangsoon Park;Jaemoon Koh;Seak Hee Oh;Jae Sung Ko;Jin Soo Moon;Kyung Mo Kim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.4
    • /
    • pp.206-214
    • /
    • 2024
  • Purpose: Few studies have reported the prevalence of inflammatory bowel disease unclassified (IBDU) among Korean pediatric IBD (PIBD) population. To address this gap, we used two tertiary centers and nationwide population-based healthcare administrative data to estimate the prevalence of Korean pediatric IBDU at the time of diagnosis. Methods: We identified 136 patients aged 2-17 years with newly diagnosed IBD (94 Crohn's disease [CD] and 42 ulcerative colitis [UC]) from two tertiary centers in Korea between 2005 and 2017. We reclassified these 136 patients using the revised Porto criteria. To estimate the population-based prevalence, we analyzed Korean administrative healthcare data between 2005 and 2016, which revealed 3,650 IBD patients, including 2,538 CD and 1,112 UC. By extrapolating the reclassified results to a population-based dataset, we estimated the prevalence of PIBD subtypes. Results: Among the 94 CD, the original diagnosis remained unchanged in 93 (98.9%), while the diagnosis of one (1.1%) patient was changed to IBDU. Among the 42 UC, the original diagnosis remained unchanged in 13 (31.0%), while the diagnoses in 11 (26.2%), 17 (40.5%), and one (2.4%) patient changed to atypical UC, IBDU, and CD, respectively. The estimated prevalences of CD, UC, atypical UC, and IBDU in the Korean population were 69.5%, 9.4%, 8.0%, and 13.1%, respectively. Conclusion: This study is the first in Korea to estimate the prevalence of pediatric IBDU. This prevalence (13.1%) aligns with findings from Western studies. Large-scale prospective multicenter studies on PIBDU are required to examine the clinical features and outcomes of this condition.

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

High-Quality Standard Data-Based Pharmacovigilance System for Privacy and Personalization (프라이버시와 개인화를 위한 고품질 표준 데이터 기반 약물감시 시스템 연구)

  • SeMo Yang;InSeo Song;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.125-131
    • /
    • 2023
  • Globally, drug side effects rank among the top causes of death. To effectively respond to these adverse drug reactions, a shift towards an active real-time monitoring system, along with the standardization and quality improvement of data, is necessary. Integrating individual institutional data and utilizing large-scale data to enhance the accuracy of drug side effect predictions is critical. However, data sharing between institutions poses privacy concerns and involves varying data standards. To address this issue, our research adopts a federated learning approach, where data is not shared directly in compliance with privacy regulations, but rather the results of the model's learning are shared. We employ the Common Data Model (CDM) to standardize different data formats, ensuring accuracy and consistency of data. Additionally, we propose a drug monitoring system that enhances security and scalability management through a cloud-based federated learning environment. This system allows for effective monitoring and prediction of drug side effects while protecting the privacy of data shared between hospitals. The goal is to reduce mortality due to drug side effects and cut medical costs, exploring various technical approaches and methodologies to achieve this.

Anaerobic digestion technology for biogas production using organic waste (유기성폐기물의 혐기성 소화에 의한 바이오가스 생산 기술)

  • Kim, Hyoung-Gun;Lee, Dae-Sung;Jang, Hae-Nam;Chung, Tai-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.50-59
    • /
    • 2010
  • A pilot-scale test for production of biogas was conducted in an specially designed anaerobic digester (KH-ABC) in which the highly concentrated organic waste (food-waste and piggery-manure) was treated. The effect of inhibitive material to the reaction on anaerobic digestion and the feasibility of digested fluid for the liquefied fertilizer were investigated. The production rate of biogas, the concentration of methane($CH_4$) in biogas, and the digesting rate of volatile solid(VS) were analyzed in the variance of the operating conditions ; the influent rate, the mixture ratio of food waste and piggery manure, and the hydraulic retention time(HRT), etc. The production rate of biogas increased from 1.2 to $2.0kg-VS/m^3{\cdot}d$ with the organic loading rate(OLR). The most suitable operating conditions were recorded at $6m^3/day$ of an influent rate, 2:3 of the raw material mixture ratio(food waste : piggery manure) and 25 days of HRT, respectively. Under those conditions, the production rate of biogas, the concentration of methane($CH_4$) in biogas and the digesting rate of volatile solid(VS) were $220m^3/day$, 64%, and 70%, respectively. The concentration of inhibitive materials was below toxic standard and the anaerobic digested fluid(raw material mixture ratio of 3:7) could meet the condition of the liquefied fertilizer.

The Effect of Entrained Air Contents on the Properties of Freeze-thaw Deterioration and Chloride Migration in Marine Concrete (연행 공기량이 해양콘크리트의 동결융해 및 염화물 확산특성에 미치는 영향)

  • Park, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.161-168
    • /
    • 2008
  • The freeze-thaw deterioration and chloride attack, which are the typical degradation factors for durability of marine concrete, are significantly affected by pore structures in terms of penetration and diffusion. These pore structures of concrete are closely related to the types and amount of AE agent, used to guarantee the resistance of freeze-thaw deterioration, and the elapsed time before concrete pouring. This paper evaluates the durability of concrete based on the results of tests on cylinder specimens and core specimens from mock-up members with different air content of 4~6% and 8~10%, respectively. According to the test results, the air content of hardened concrete is 2.5~5.2% at 7 days and 2.4~5.1% at 28 days. These air contents are about half of the initial values just after the concrete mixing. Judging from the amount of scale after the freeze-thaw test completed, air content of 8~10% is slightly more beneficial against the deterioration of concrete than air content of 4~6%. Meanwhile, the core specimens from mock-up members exhibit somewhat unfavorable freeze-thaw deterioration and chloride migration characteristic compared with the cylinder specimens tested in the laboratory under the same mixing condition, as to show 106% in freeze-thaw test and 160% in chloride diffusion coefficient test, respectively.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.