• Title/Summary/Keyword: time isolates

Search Result 335, Processing Time 0.027 seconds

Molecular Characterization of an Isolate of Bean Common Mosaic Virus First Identified in Gardenia Using Metatranscriptome and Small RNA Sequencing

  • Zhong-Tian Xu;Hai-Tao Weng;Jian-Ping Chen;Chuan-Xi Zhang;Jun-Min Li;Yi-Yuan Li
    • The Plant Pathology Journal
    • /
    • v.40 no.1
    • /
    • pp.73-82
    • /
    • 2024
  • Gardenia (Gardenia jasminoides) is a popular and economically vital plant known for its ornamental and medicinal properties. Despite its widespread cultivation, there has been no documentation of plant viruses on gardenia yet. In the present study, gardenia leaves exhibiting symptoms of plant viral diseases were sampled and sequenced by both metatranscriptome and small RNA sequencing. As a consequence, bean common mosaic virus (BCMV) was identified in gardenia for the first time and named BCMV-gardenia. The full genome sequence of BCMV-gardenia is 10,054 nucleotides (nt) in length (excluding the poly (A) at the 3' termini), encoding a large polyprotein of 3,222 amino acids. Sequence analysis showed that the N-termini of the polyprotein encoded by BCMV-gardenia is less conserved when compared to other BCMV isolates, whereas the C-termini is the most conserved. Maximum likelihood phylogenetic analysis showed that BCMVgardenia was clustered closely with other BCMV isolates identified outside the leguminous plants. Our results indicated that the majority of BCMV-gardenia virus-derived small interfering RNAs (vsiRNAs) were 21 nt and 22 nt, with 21 nt being more abundant. The first nucleotide at the 5' termini of vsiRNAs derived from BCMV-gardenia preferred U and A. The ratio of vsiRNAs derived from sense (51.1%) and antisense (48.9%) strands is approaching, and the distribution of vsiRNAs along the viral genome is generally even, with some hot spots forming in local regions. Our findings could provide new insights into the diversity, evolution, and host expansion of BCMV and contribute to the prevention and treatment of this virus.

Biochemical Characterization of Fast-and Slow-Growing Rhizobium japonicum (Fast-growing과 Slow-growing Rhizobium japonicum의 생화학적 특성)

  • Kim, Chang Jin;Kim, Sung Hoon;Mheen, Tae Ick
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 1985
  • Rhizobium japonicum isolates from all around Korea could be classified into two groups, i.e., acid producing fast-growers with 2.4 hour mean generation time and non-acid producing slow-growers in yeast extract-mannitol medium with 13.1 hour mean generation time. Tested fast-growers were higher in 6-phosphogluconate dehydrogenase activity than slow-growers were and used sucrose as carbon source whereas slow-growers did not. Fast-grower R4, R257, R278, showed tolerance even in 0.5M NaCl or above and the growth of all the strains tested were inhibited at below pH 4.5. Relative symbiotic activities of nitrogen fixation for these isolated with Glycine max cv. Jangyeobkong (commercial soybean cultivar mostly cultivated in Korea) ranged 0.1 to 2.0 comparing to that of R. japonicum L-259 (NRRL), without regard to their growth rate.

  • PDF

Use of Bioluminescent Indicator Acinetobacter Bacterium for Screening and Characterization of Active Antimicrobial Agents

  • Haleem Abd-El;A.M. Desouky;Zaki Sahar A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1706-1712
    • /
    • 2006
  • Because of the need for new antimicrobial substances with novel mechanisms of action, we report here the use of an Acinetobacter reporter system for high-throughput screening of active antimicrobial agents. The bioreporter Acinetobacter strain DF4/PUTK2 carrying luciferase genes luxCDABE was chosen because of its ecological importance and it is widespread in nature. This bioreporter is genetically engineered to emit light constitutively that can be measured in real time by luminometry. Hence, this reporter system was employed to determine the bacteriostatic actions of spent-culture supernatants derived from twelve bacterial isolates. Out of the results, the strongest bioluminescence inhibitory effect of the supernatants was recorded with Bacillus cereus strain BAC (S5). Subsequently, ethyl acetate extracts of extracellular products of strain BAC (S5) were separated by a thin-layer chromatography (TLC). Based on the bioluminescence inhibitory assay, three fractions were found to have antimicrobial activity. One fraction (C) having the strongest antimicrobial activity was further purified using TLC and characterized by IR, $^1H$ NMR, mass spectrometry, SDS-PAGE, and amino acid composition analysis. The results predicted the presence of 2-pyrrolidone-S-carboxylic acid (PCA) and the octadeconic-acid-like fatty acid. Fraction C also demonstrated a broad inhibitory activity on several Gram-negative and Gram-positive bacteria. In conclusion, the Acinetobacter reporter system shows great potential to be a reliable, sensitive, and real-time indicator of the bacteriostatic actions of the antimicrobial agents.

Time-Lapse Video Microscopy of Wound Recovery and Reproduction in the Siphonous Green Alga Derbesia tenuissima

  • Martin, Erika;Jeremy , Pickett-Heaps;Kim, Gwang-Hoon;West, John
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.109-124
    • /
    • 2006
  • Responses to various types of mechanically induced wounding were followed in the giant-celled Caulerpalean species, Derbesia tenuissima, using time-lapse video-microscopy. Gametophyte vesicle cells. Puncture wounding: the gametophyte cell seals the puncture in 5 min. This is followed by cycles of ruptures and sealing, ending with full recovery in 24 hrs. Cut wounding: the protoplast immediately retracts away from the wall and reforms an intact, deflated protoplast that expands to fill the original cell within 21 hrs. Crush wounding (internal). When retained within the cell wall many protoplast fragments condense, round up, and coalesce; the reconstituted protoplast expands until it attains complete recovery, filling the original cell shape in 12 hrs. Crush wounding (external). Protoplast fragments extruded from the crushed cell are more numerous and smaller taking longer to recover. Most fragments become spherical, transforming into small viable cells capable of reproduction in several days. Sporophyte filaments. Crush wounding creates many small fragments that initially condense, coalesce and then expand within the wall to restore a complete filament with normal cytoplasmic streaming within 5 hrs. Reproduction: gametophyte. Our culture isolates produce more females than males (30:1). Gametangia develop one day before discharge that occurs explosively (1/6 sec) at first morning light. The vesicle cell forms successive gametangia every 14 days. Sporophyte. Each sporangium develops on a lateral branch that becomes isolated by the creation of successive basal plugs. After cytoplasmic cleavage and differentiation the stephanokont spores are discharged. The spores settle quickly and germinate forming gametophyte cells.

Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato

  • Cho, Min Seok;Park, Duck Hwan;Namgung, Min;Ahn, Tae-Young;Park, Dong Suk
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least $1.47{\times}10^2copies/{\mu}l$ of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or $10^{-6}$ dilution point of 0.12 at $OD_{600}$ units of cells per reaction using a calibrated cell suspension.

Chemical Constituents from Leaves of Pileostegia viburnoides Hook.f.et Thoms

  • Li, Xiao Jun;Liu, Zu Zhen;Kim, Kwan-Woo;Wang, Xiang;Li, Zhi;Kim, Youn-Chul;Yook, Chang Soo;Liu, Xiang Qian
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.154-161
    • /
    • 2016
  • Phytochemical investigation on the leaves of Pileostegia viburnoides Hook.f.et Thoms led to the isolation of twenty-five compounds, and their structures were identified as n-dotriacontane (1), taraxeryl acetate (2), friedelin (3), epifriedelinol (4), canophyllal (5), stigmast-4-en-3-one (6), stigmasterol (7), (24R)-5A-stigmastane-3,6-dione (8), ursolic acid (9), pomolic acid (10), umbelliferone (11), 4-epifriedelin (12), n-octatriacontanol (13), ${\beta}$-amyrin (14), ${\alpha}$-amyrin (15), taraxerol (16), nonadecanol (17), friedelane (18), arachic acid (19), protocatechuic acid (20), n-pentatriacontanol (21), hexadecanoic acid (22), vincosamide (23), daucosterol (24), and skimming (25), respectively. To our best knowledge, compounds 1, 2, 12, 13, 17 - 19 and 21-23 were new within Saxifragaceae family. Compounds 15, 16, and 20 were produced from this genus for the first time. Compounds 4, 14 and 25 were first obtained from species P. viburnoides and compounds 3, 5 - 11, and 24 were achieved from the leaves of P. viburnoides for the first time. Furthermore, the anti-neuroinflammatory activity of these isolates was evaluated.

Chemical Constituents from the Aerial Parts of Vernonia cinerea L. and Their Anti-Inflammatory Activity (베르노니아 시네레아 지상부의 화학 성분 및 항염증 활성)

  • Youn, Ui Joung;Chang, Leng Chee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2016
  • Background: Previous phytochemical studies of whole Vernonia cinerea L. plants have identified sesquiterpene lactones, sterols, and triterpenes, which possess anticancer, antifeedant, and antimalarial activities. However, there are no reports of other types of bioactive metabolites. Therefore, the present study aimed to identify phenolic compounds with anti-inflammatory activity in the aerial parts of the plant. Methods and Results: Compounds were isolated from the aerial parts of V. cinerea using a silica and C-18 gel columns and semi-preparative HPLC instrument, and the structures of the compounds were determined using one- and two- dimension nuclear magnetic resonance spectroscopy and mass spectroscopy. The chloroform soluble extracts and isolated compounds were evaluated for their anti-inflammatory potential based on their ability to inhibit nitric oxide production and $TNF-{\alpha}$ induced $NF-{\kappa}B$ activity. Conclusions: Phytochemical study of the aerial parts of V. cinerea led to the isolation of six phenolic compounds. Compound 1 was a major metabolite, and to the best of our knowledge, compounds 2 - 6 were isolated from V.cinerea for the first time. Among the isolates, compounds 1 and 3 exhibited $TNF-{\alpha}$-induced $NF-{\kappa}B$ activity with $IC_{50}$ values of 7.5 and 11.5 M, respectively, and the inhibitory activity of phenyl propanoid compound 3 on $TNF-{\alpha}$-induced $NF-{\kappa}B$ was evaluated for the first time.

Colonization of Pathogens in Earphones and Observation of Effective Sterilization Methods and Cycles

  • Kwon, Hyeokjin;Jeong, Myeongguk;Go, Shinjee;Kim, Yeojin;Kim, Yein;Kim, Yeeun;Roh, Seungjun;Lee, Seonggwang;Choi, Go-Eun
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.186-191
    • /
    • 2022
  • The use of earphones has recently been widely used around the world. In currently, students wear earphones a lot in a daily life. The types of earphones are open-earphones, Canalphones, and headphones. Many students don't periodically to sterilization their earphones. Therefore, it can be an incubator that can induced ear infections. The objective of this study was to detect the pathogenic bacteria from the earphones used by the students. A total of 3 type earphones swabs were collected by sterile cotton swabs. The swabs were inoculated onto BHI agar and incubated aerobically 48 hour at 37℃. 16s rRNA PCR, electrophoresis and sequencing were performed to confirm the identification of all the bacterial isolates. As a result, 24 pathogens were identified in sequencing. Three types of earphones were sterilized in three ways: ultraviolet (UV), 70% ethyl alcohol, and antibacterial wet tissue. If you use earphones for a long time without disinfecting them for a long time, it causes various diseases such as external ear infections. The findings of this study the users periodically to sterilization their respective earphones.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.