Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5050

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system  

Park, Se-Keun (Department of Environmental Science & Biotechnology, Hallym University)
Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University)
Oh, Young-Sook (Department of Environmental Engineering and Energy, Myongji University)
Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University)
Publication Information
Korean Journal of Microbiology / v.51, no.4, 2015 , pp. 355-363 More about this Journal
Abstract
The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.
Keywords
Methylobacterium; Sphingomonas; biofilm; chlorine resistance; drinking water; growth kinetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wingender, J. and Flemming, H.C. 2011. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 214, 417-423.   DOI
2 Batte, M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., and Block, J.C. 2003a. Biofilms in drinking water distribution systems. Rev. Environ. Sci. Biotechnol. 2, 147-168.   DOI
3 Batte, M., Mathieu, L., Laurent, P., and Prevost, M. 2003b. Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization. Can. J. Microbiol. 49, 741-753.   DOI
4 Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. 2002a. Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 36, 4477-4486.   DOI
5 Boe-Hansen, R., Albrechtsen, H.J., Arvin, E., and Jorgensen, C. 2002b. Dynamics of biofilm formation in a model drinking water distribution system. J. Water Supply Res. Technol. AQUA 51, 399-406.   DOI
6 Codony, F., Morato, J., and Mas, J. 2005. Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Res. 39, 1896-1906.   DOI
7 Dang, H. and Lovell, C.R. 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66, 467-475.   DOI
8 Donlan, R.M. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881-890.   DOI
9 Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., and Franson, M.A.H. 2005. Standard methods for the examination of water and wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., USA.
10 Flemming, H.C., Percival, S.L., and Walker, J.T. 2002. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. Water Supply 2, 271-280.
11 Hiraishi, A., Furuhata, K., Matsumoto, A., Koike, K.A., Fukuyama, M., and Tabuchi, K. 1995. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61, 2099-2107.
12 Kasahara, S., Maeda, K., and Ishikawa, M. 2004. Influence of phosphorus on biofilm accumulation in drinking water distribution systems. Water Sci. Technol. Water Supply 4, 389-398.
13 Keinanen, M.M., Martikainen, P.J., and Kontro, M.H. 2004. Microbial community structure and biomass in developing drinking water biofilms. Can. J. Microbiol. 50, 183-191.   DOI
14 Koskinen, R., Ali-Vehmas, T., Kampfer, P., Laurikkala, M., Tsitko, I., Kostyal, E., Atroshi, F., and Salkinoja-Salonen, M. 2000. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems. J. Appl. Microbiol. 89, 687-696.   DOI
15 Mah, T.F.C. and O'Toole, G.A. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34-39.   DOI
16 Lee, W.H., Wahman, D.G., Bishop, P.L., and Pressman, J.G. 2011. Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability. Environ. Sci. Technol. 45, 1412-1419.   DOI
17 Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999-1007.   DOI
18 Liu, R., Yu, Z., Zhang, H., Yang, M., Shi, B., and Liu, X. 2012. Diversity of bacteria and mycobacteria in biofilms of two urban drinking water distribution systems. Can. J. Microbiol. 58, 261-270.   DOI
19 Manuel, C.M., Nunes, O.C., and Melo, L.F. 2007. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 41, 551-562.   DOI
20 Mathieu, L., Bouteleux, C., Fass, S., Angel, E., and Block, J.C. 2009. Reversible shift in the ${\alpha}$-, ${\beta}$- and ${\gamma}$-proteobacteria populations of drinking water biofilms during discontinuous chlorination. Water Res. 43, 3375-3386.   DOI
21 McCoy, S.T. and VanBriesen, J.M. 2012. Temporal variability of bacterial diversity in a chlorinated drinking water distribution system. J. Environ. Eng. 138, 786-795.   DOI
22 Melo, L.F. and Vieira, M.J. 1999. Physical stability and biological activity of biofilms under turbulent flow and low substrate concentration. Bioprocess Eng. 20, 363-368.   DOI
23 Morato, J., Mir, J., Codony, F., Mas, J., and Ribas, F. 2003. Microbial response to disinfectants, pp. 657-693. In Mara, D. and Horan, N. (eds.), The Handbook of Water and Wastewater Microbiology. Academic Press, London, UK.
24 Simoes, L.C. and Simoes, M. 2013. Biofilms in drinking water: problems and solutions. RSC Adv. 3, 2520-2533.   DOI
25 Ollos, P.J., Huck, P.M., and Slawson, R.M. 2003. Factors affecting biofilm accumulation in model distribution systems. J. Am. Water Works Assoc. 95, 87-97.   DOI
26 Pereira, M.O., Kuehn, M., Wuertz, S., Neu, T., and Melo, L.F. 2002. Effect of flow regime on the architecture of a Pseudomonas fluorescens biofilm. Biotechnol. Bioeng. 78, 164-171.   DOI
27 Rickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E., and Handley, P.S. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94-100.   DOI
28 Srinivasan, S., Harrington, G.W., Xagoraraki, I., and Goel, R. 2008. Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res. 42, 3393-3404.   DOI
29 Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187-209.   DOI
30 van der Kooij, D., Vrouwenvelder, H.S., and Veenendaal, H.R. 1995. Kinetic aspects of biofilm formation on surfaces exposed to drinking water. Water Sci. Technol. 32, 61-65.
31 Vaz-Moreira, I., Nunes, O.C., and Manaia, C.M. 2011. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl. Environ. Microbiol. 77, 5697-5706.   DOI
32 Wang, H., Hu, C., Hu, X., Yang, M., and Qu, J. 2012. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res. 46, 1070-1078.   DOI