• Title/Summary/Keyword: time interpolation

Search Result 752, Processing Time 0.029 seconds

MULTI-SCALE MODELING AND ANALYSIS OF CONVECTIVE BOILING: TOWARDS THE PREDICTION OF CHF IN ROD BUNDLES

  • Niceno, B.;Sato, Y.;Badillo, A.;Andreani, M.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.620-635
    • /
    • 2010
  • In this paper we describe current activities on the project Multi-Scale Modeling and Analysis of convective boiling (MSMA), conducted jointly by the Paul Scherrer Institute (PSI) and the Swiss Nuclear Utilities (Swissnuclear). The long-term aim of the MSMA project is to formulate improved closure laws for Computational Fluid Dynamics (CFD) simulations for prediction of convective boiling and eventually of the Critical Heat Flux (CHF). As boiling is controlled by the competition of numerous phenomena at various length and time scales, a multi-scale approach is employed to tackle the problem at different scales. In the MSMA project, the scales on which we focus range from the CFD scale (macro-scale), bubble size scale (meso-scale), liquid micro-layer and triple interline scale (micro-scale), and molecular scale (nano-scale). The current focus of the project is on micro- and meso-scales modeling. The numerical framework comprises a highly efficient, parallel DNS solver, the PSI-BOIL code. The code has incorporated an Immersed Boundary Method (IBM) to tackle complex geometries. For simulation of meso-scales (bubbles), we use the Constrained Interpolation Profile method: Conservative Semi-Lagrangian $2^{nd}$ order (CIP-CSL2). The phase change is described either by applying conventional jump conditions at the interface, or by using the Phase Field (PF) approach. In this work, we present selected results for flows in complex geometry using the IBM, selected bubbly flow simulations using the CIP-CSL2 method and results for phase change using the PF approach. In the subsequent stage of the project, the importance of effects of nano-scale processes on the global boiling heat transfer will be evaluated. To validate the models, more experimental information will be needed in the future, so it is expected that the MSMA project will become the seed for a long-term, combined theoretical and experimental program.

Verification and validation of isotope inventory prediction for back-end cycle management using two-step method

  • Jang, Jaerim;Ebiwonjumi, Bamidele;Kim, Wonkyeong;Cherezov, Alexey;Park, Jinsu;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2104-2125
    • /
    • 2021
  • This paper presents the verification and validation (V&V) of a calculation module for isotope inventory prediction to control the back-end cycle of spent nuclear fuel (SNF). The calculation method presented herein was implemented in a two-step code system of a lattice code STREAM and a nodal diffusion code RAST-K. STREAM generates a cross section and provides the number density information using branch/history depletion branch calculations, whereas RAST-K supplies the power history and three history indices (boron concentration, moderator temperature, and fuel temperature). As its primary feature, this method can directly consider three-dimensional core simulation conditions using history indices of the operating conditions. Therefore, this method reduces the computation time by avoiding a recalculation of the fuel depletion. The module for isotope inventory calculates the number densities using the Lagrange interpolation method and power history correction factors, which are applied to correct the effects of the decay and fission products generated at different power levels. To assess the reliability of the developed code system for back-end cycle analysis, validation study was performed with 58 measured samples of pressurized water reactor (PWR) SNF, and code-to-code comparison was conducted with STREAM-SNF, HELIOS-1.6 and SCALE 5.1. The V&V results presented that the developed code system can provide reasonable results with comparable confidence intervals. As a result, this paper successfully demonstrates that the isotope inventory prediction code system can be used for spent nuclear fuel analysis.

Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim, Heesung;An, Hyunuk;Kim, Haedo;Lee, Jeaju
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.

Effects of Network Density on Gridded Horizontal Distribution of Meteorological Variables in the Seoul Metropolitan Area (관측망 밀도가 기상 자료의 격자형 수평 분포에 미치는 영향)

  • Kang, Minsoo;Park, Moon-Soo;Chae, Jung-Hoon;Min, Jae-Sik;Chung, Boo Yeon;Han, Seong Eui
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.183-196
    • /
    • 2019
  • High-quality and high-resolution meteorological information is essential to reduce damages due to disastrous weather phenomena such as flash flood, strong wind, and heat/cold waves. There are many meteorological observation stations operated by Korea Meteorological Administration (KMA) in Seoul Metropolitan Area (SMA). Nonetheless, they are still not enough to represent small-scale weather phenomena like convective storm cells due to its poor resolution, especially over urban areas with high-rise buildings and complex land use. In this study, feasibilities to use additional pre-existing networks (e.g., operated by local government and private company) are tested by investigating the effects of network density on the gridded horizontal distribution of two meteorological variables (temperature and precipitation). Two heat wave event days and two precipitation events are chosen, respectively. And the automatic weather station (AWS) networks operated by KMA, local-government, and SKTechX in Incheon area are used. It is found that as network density increases, correlation coefficients between the interpolated values with a horizontal resolution of 350 m and observed data also become large. The range of correlation coefficients with respect to the network density shows large in nighttime rather than in daytime for temperature. While, the range does not depend on the time of day, but on the precipitation type and horizontal distribution of convection cells. This study suggests that temperature and precipitation sensors should be added at points with large horizontal inhomogeneity of land use or topography to represent the horizontal features with a resolution higher than 350 m.

Soil Depth Information DB Construction Methods for Liquefaction Assessment (액상화 평가를 위한 지층심도DB 구축 방안)

  • Gang, ByeongJu;Hwang, Bumsik;Kim, Hansam;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2019
  • The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea (서해 가로림만 수온의 시계열 분석)

  • Yang, Joon-Yong;Cho, Sunghee;Lee, Joon-Soo;Han, Changhoon;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure (초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • To develop an efficient procedure related to the flamelet library, the machine learning process based on artificial neural network(ANN) is applied for the gaseous hydrogen/liquid oxygen combustor under a supercritical pressure condition. For hidden layers, 25 combinations based on Rectified Linear Unit(ReLU) and hyperbolic tangent are adopted to find an optimum architecture in terms of the computational efficiency and the training performance. For activation functions, the hyperbolic tangent is proper to get the high learning performance for accurate properties. A transformation learning data is proposed to improve the training performance. When the optimal node is arranged for the 4 hidden layers, it is found to be the most efficient in terms of training performance and computational cost. Compared to the interpolation procedure, the ANN procedure reduces computational time and system memory by 37% and 99.98%, respectively.

Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning (딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득)

  • Nam, Chunghee
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.