• 제목/요약/키워드: time domain seakeeping analysis

검색결과 7건 처리시간 0.018초

Time-domain analysis of nonlinear motion responses and structural loads on ships and offshore structures: development of WISH programs

  • Kim, Yong-Hwan;Kim, Kyong-Hwan;Kim, Jae-Han;Kim, Tae-Young;Seo, Min-Guk;Kim, Yoo-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.37-52
    • /
    • 2011
  • The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

불규칙 파랑 중 직접 예인하는 케이슨의 상판침수에 대한 시간 영역 해석 (Time Domain Analysis on Deck Wetness of a Caisson Wet-towed in Irregular Waves)

  • 허재경;박창욱
    • 한국해안·해양공학회논문집
    • /
    • 제28권1호
    • /
    • pp.27-33
    • /
    • 2016
  • 불규칙 파랑 중에서 직접 예인하는 케이슨의 상판침수에 대한 수치해석을 수행하였다. 패널법을 이용하여 주파수 영역에서의 선형 운동해석을 수행하였고, 통계적 방법을 통해 상판침수를 예측하였다. 시간영역 해석에서는 예인시스템, 환경하중 등을 상세히 구현하여 운동해석을 수행하였고, 상판침수 결과를 주파수 영역에서의 결과와 비교하였다. 또한, 시간 영역 해석에서는 예인선의 수 및 배치에 대한 검토를 수행하여 상판침수 측면에서 예인시스템이 미치는 영향과 운송조건을 고찰하였다.

콘테이너선의 불규칙파 중 운동응답에 대한 실험적 고찰 (Experimental Analysis on the Motion Response of a Container Ship in Irregular Head Waves)

  • 홍사영;이상무;홍도천
    • 대한조선학회지
    • /
    • 제24권2호
    • /
    • pp.36-46
    • /
    • 1987
  • This paper presents the results of seakeeping tests in a container ship model in irregular head waves. A time domain signal generating procedure is devised so that the wave maker behaves in accordance with the specified wave spectrum. The surface elevation of generated waves is measured and analysed to render the recorded wave spectrum for comparison with the specified one. Correction is made to the time domain signal until the differences between the two spectra become negligible. The motion responses and vertical acceleration of the self-propelled ship model are measured and analysed by both the spectral and the double amplitude methods. The two methods give nearly same statistical values. Finally the recorded spectra are compared with those calculated from the frequency domain motion analysis to show the credibility of the experimental results.

  • PDF

초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법) (The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method))

  • 이호영;송기종;염덕준
    • 대한조선학회논문집
    • /
    • 제33권2호
    • /
    • pp.127-138
    • /
    • 1996
  • 고속선의 내항성능 해석 방법으로 스트립 방법, 통합이론(Unified theory), 3차원 판넬 방법등이 널리 사용되고 있다. 스트립 이론은 2차원적 해석 방법으로 전진속도가 빠른 경우나 추파중 저주파수 영역에서 유체력 계수와 운동응답이 정확하지 않으며, 통합이론은 내부영역에서는 2차원적 해석을 사용하고 외부영역은 세장체 이론을 사용하여 해석하는 방법으로 수학적으로 복잡한 단점이 있다. 3차원 판넬 방법을 이용한 해석은 계산 시간이 오래 걸리지만 고속인 경우에 모든 주파수 영역에서 정확한 해를 주는 것으로 알려져 있고, 전산기의 급속한 발달과 더불어 가장 권장되는 방법이다. 본 논문에서는 고속선의 해석에 전통적으로 사용되고 있는 스트립 법에 의한 해석과 3차원 판넬 방법을 이용한 해석법을 비교한다. 3차원 판넬 방법에 의한 해석은 쏘오스 분포법과 전진하면서 동요하는 그린 함수를 사용하고, 그린 함수의 수치, 계산은 Hoff의 방법을 이용하였고, 그린 함수는 종축에 대한 대칭 관계를 이용하여 계산 시간을 줄였다. 계산에 사용된 선종은 카타마란(Catamaran) 형태의 고속선이며 상기 두 방법에 의해 구해진 유체력 계수, 파강제력과 주파수 응답함수 등을 비교하였고, 또한 불규칙파중 운동응답의 계산 결과를 비교 검토해 보았다.

  • PDF

비선형 선박운동을 고려한 대파고 파랑 중 조종성능에 대한 연구 (Effects on Nonlinear Ship Motions on Ship Maneuvering in Large Amplitude Waves)

  • 서민국;김용환;김경환
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.516-527
    • /
    • 2011
  • This paper considers a numerical analysis of ship maneuvering performance in the high amplitude incident waves by adopting linear and nonlinear ship motion analysis. A time-domain ship motion program is developed to solve the wave-body interaction problem with the ship slip speed and rotation, and it is coupled with a modular type 4-DOF maneuvering problem. Nonlinear Froude-Krylov and restoring forces are included to consider weakly nonlinear ship motion. The developed method is applied to observe the nonlinear ship motion and planar trajectories in maneuvering test in the presence of incident waves. The comparisons are made for S-175 containership with existing experimental data. The nonlinear computation results show a fair agreement of overall tendency in maneuvering performance. In addition, maneuvering performances with respect to wave slope is predicted and reasonable results are observed.

Semi-Analytical Methods for Different Problems of Diffraction-Radiation by Vertical Circular Cylinders

  • Malenica, Sime
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.116-138
    • /
    • 2012
  • As in the other fields of mechanics, analytical methods represent an important analysis tool in marine hydrodynamics. The analytical approach is interesting for different reasons : it gives reference results for numerical codes verification, it gives physical insight into some complicated problems, it can be used as a simplified predesign tool, etc. This approach is of course limited to some simplified geometries (cylinders, spheres, ...), and only the case of one or more cylinders, truncated or not, will be considered here. Presented methods are basically eigenfunction expansions whose complexity depends on the boundary conditions. The hydrodynamic boundary value problem (BVP) is formulated within the usual assumptions of potential flow and is additionally simplified by the perturbation method. By using this approach, the highly nonlinear problem decomposes into its linear part and the higher order (second, third, ...) corrections. Also, periodicity is assumed so that the time dependence can be factorized i.e. the frequency domain formulation is adopted. As far as free surface flows are concerned, only cases without or with small forward speed are sufficiently simple to be solved semi-analytically. The problem of the floating body advancing in waves with arbitrary forward speed is far more complicated. These remarks are also valid for the general numerical methods where the case of arbitrary forward speed, even linearized, is still too difficult from numerical point of view, and "it is fair to say that there exists at present no general practical numerical method for the wave resistance problem" [9], and even less for the general seakeeping problem. We note also that, in the case of bluff bodies like cylinders, the assumptions of the potential flow are justified only if the forward speed is less than the product of wave amplitude with wave frequency.