• Title/Summary/Keyword: time delay controller

Search Result 732, Processing Time 0.029 seconds

A method of utilizing the predicted current in the high performance PI current controller with a control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.1-3
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under the control time delay. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the electrical uncertainties of a servo drive system and the control time delay.

  • PDF

Contruction of a robust control system for a plant with time delay

  • Morikawa, Youichi;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.103-105
    • /
    • 1995
  • In this paper, though Simith controller is also used, we propose a new system configuration which can be regarded an SISO continuous nth-order plant with time delay of k-times of a sampling period as a linear discrete (n + k)th order plant of which all state variables can be available. Consequently, we can pply linear control system design techniques which do not consider the existence of time delay to the proposed system.

  • PDF

Dynamic Output-Feedback Controller Design for Stochastic Time-Delay Systems (스토캐스틱 시간지연 시스템을 위한 동적 출력궤환 제어기 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.462-463
    • /
    • 2008
  • This paper proposes a method for dynamic output-feedback controller design for stochastic time-delay systems. Based on recent results on time-delay systems control, a tractable and delay-dependent design condition is proposed, which provides a dynamic output-feedback controller to render the closed-loop stochastic time-delay systems to be asymptotically stable in the mean-square sense. The feasibility problem of the proposed condition is recast into a cone complementarity problem. An algorithm adopting cone complementarity linearization is presented to solve the resulting problem.

  • PDF

A Study on the Power System Control and Monitoring Technique Using CAN (CAN을 이용한 발전계통의 제어 및 모니터링 기법 연구)

  • Jung, Joon-Hong;Choi, Soo-Young;Park, Ki-Heon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.268-276
    • /
    • 2003
  • In this paper, we present a new control and monitoring technique for a power system using CAN(Controller Area Network). Feedback control systems having co'ntrol loops closed through a network(i.e. Ethernet, ControlNet, CAN) are called NCSs(Networked Control Systems). The major problem of NCSs is the variation of stability property according to time delay including network-induced delay and computation delay in nodes. We present a new stability analysis method of NCSs with time delay exploiting a state-space model of LTI(Linear Time Invariant) interconnected systems. The proposed method can determine a proper sampling period of NCSs that preserves stability performance even in NCSs with a dynamic controller. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to NCSs for a power system. The results of the experiment validate effectiveness of our control and monitoring technique for a power system.

A Time Delay-Based Gain Scheduled Control and It's Application to Electromagnetic Suspension System (시간지연 이득계획제어와 자기부상시스템에의 응용)

  • Hong Ho-Kyung;Jo Jeong-Min;Cho Heung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.569-575
    • /
    • 2005
  • This paper proposes a gain scheduled control technique using time-delay for the nonlinear system with plant uncertainties and unexpected disturbances. The time delay-based gain scheduled control depends on a direct estimation of a function representing the effect of uncertainties. The information from the estimation is used to cancel the unknown dynamics and the unexpected disturbances simultaneously. The proposed estimation scheme with a finite convergence time is formulated in order to estimate the unknown scheduling variable variation. In other words, the time delay-based gain scheduled control uses the past observation of the system's response and the control input to directly modify the control actions rather than to adjust the controller gains or to identify system parameters. It has a simple structure so as to minimize the computational burden. The benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with plant uncertainties and external disturbances, and the proposed controller is compared with the conventional state feedback controller.

2 DOF robust performance controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형 시스템의 2 자유도 견실성능 제어기 설계)

  • 이갑래;정은태;최봉렬;박홍배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.43-53
    • /
    • 1997
  • A robust stability condition for linear systems with time delay in all variables and parameter uncertainties in all system matrices is derived. Robust performance condition that accounts for robust model-matching of closed loop system and disturbance rejection is also derived. Using the robust performance condition, robust $H^{\infty}$ controller and .mu.(sgructured singular value) controller with two-degree-of-freedom(2DOF) are designed. The controller structure is considered for $H^{\infty}$ controller, while uncertainity structure is considered for .mu. controller. Using the proposed method, $H^{\infty}$ and .mu. controllers for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.ce.

  • PDF

Identification of the Relationship Between the Discrete TDCIM and the Discrete PID Controller (이산 TDCIM과 이산 PID 제어기 사이의 관계 규명)

  • Park, Sang Hyun;Jeong, Eui In;Shin, Dong Gwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Time-delay control with internal model (TDCIM) is the controller for robot manipulators that applies the time-delay estimation and the concept of internal model control (IMC). TDCIM is robust against unknown dynamics and non-linear friction like coulomb friction and static friction. It is simple and computationally efficient. This study presents the relationship between the discrete TDCIM and the discrete PID controller. The PID controller is the most popular control law in the real application. But often the PID controller can be difficult to achieve the desired level of control performance. The result in this study provides a good candidate solution to these situations.

2nd Order Deadbeat Controller Considering Calculation Time Delay and Sensitivity for UPS Inverter (연산시간지연 및 민감성을 고려한 UPS 인버터용 2차 데드비트 제어기)

  • Kim, Byoung-Jin;Choi, Jae-Ho;Jain , Amit
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.4
    • /
    • pp.170-178
    • /
    • 2001
  • Deadbeat technique has been proposed as a digital controller for an UPS inverter to achieve the fast, response to a load variation and to conserve a very low THD under a nonlinear load condition. This scheme contains a fatal drawback, sensitivity against parameter variation and calculation time delay. This paper proposes a second order deadbeat controller, which fundamentally solves the calculation time delay problem and certainly guarantees the robustness of the parameter's variation. RLP(Repetitive Load Predictor) which predicts the load current ahead of two sampling time and FVR(Fundamental Voltage Regulator) which eliminates the fundamental errors of the output voltage are also proposed for the second order deadbeat controller to apply to UPS inverter systems. These are shown theoretically and practically through simulation and experiment.

  • PDF

Design of Controller using Smith Predictor in the Distributed control system including time-delay (시간 지연이 존재하는 분산 제어 시스템에서 Smith predictor를 이용한 제어기의 설계)

  • Cho, Duk-Young;Park, Eik-Dong;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2317-2319
    • /
    • 2000
  • This paper presents a feedback controller for compensation time delay in the distributed control systems. In using network, controllers and sensors are distributed on a communications network, there exist time delays on communication lines between the system components. So, we deal with the controller using Smith predictor controller design issue for such systems. Particularly compensated for the time delay of the plant or controller involved integrator using Modified Smith predictor. Simulation and the results show the good performance for the modified Smith predictor control systems.

  • PDF

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.