• Title/Summary/Keyword: time

Search Result 185,406, Processing Time 0.179 seconds

Solubility Improvement of Cuttle Bone Powder Using Organic Acids (유기산처리에 의한 갑오징어갑 분말의 가용성 개선)

  • KIM Jin-Soo;CHO Moon-LAE;HEU Min-Soo;CHO Tae-Jong;AN Hwa-Jin;CHA Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • As a pan of a study on effective use of seafood processing by-products, such as cuttle bone as a calcium source, we examined on the kind of organic acid (acetic acid and lactic acid), reaction concentration (mole ratio of calcium to mole of organic acid), reaction temperature $(20\~60^{\circ}C)$ and reaction time (6$\~$24 hours) as reaction conditions for the solubility improvement of cuttle bone powder. The high soluble cuttle bone powder was also prepared from the optimal reaction conditions and partially characterized. From the results on examination of reaction conditions, the high soluble cuttle bone powder was prepared with 0.4 in mole ratio of a calcium to mole of a acetic acid at room temperature for 12 hours, Judging from the patterns of IR and X-ray diffraction, the main component of the high soluble cuttle bone powder was presented as a form of calcium acetate, and a scanning electron micrograph showed an irregular form. The soluble calcium content in the high soluble cuttle bone powder was $5.3\%$ and it was improved about 1,380 times compared to a raw cuttle bone powder. For the effective use of the high soluble cuttle bone powder as a material for a functional improvement in processing, it should be used after the calcium treatment at room temperature for about 1 hour in tap water or distilled water. from these results, we concluded that it is possible to use the high soluble cut시e bone powder as a material for a functional improvement in processing.

Effects of TRIZ's 40 Inventive Principles Application on the Improvement of Learners' Creativity (트리즈 40가지 발명 원리 적용이 학습자의 창의성 신장에 미치는 영향)

  • Nam, Seungkwon;Choi, Wonsik
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.203-232
    • /
    • 2006
  • The purposes of this study are to examine the effects of learning, which was applied TRIZ's 40 inventive principles, on the improvement of learners' creativity and to offer basic information that would be necessary to study on Inventive Education in Technology Education. In order to achieve the purposes, objects were divided into two groups, experiment group(74 students) and control group(67 students), who were from B Middle school in Daejeon. Creativity Self-Assessment and Student Inventive Rating Scale were used as tools for research so that we could find the homogeneity in two groups. An applied design method was nonequivalent control group pretest-posttest design. This study was performed for 2 hours on the 1st and the 3rd Saturday in every month from the 3rd week of March, 2006 to the 3rd of July of 2006, and total researching period was 9 weeks. In that time, the students were required to learn 40 inventive principles. The results from this study are as below. (1) Applying TRIZ's 40 inventive principles had a positive effect on students' CQ(creative quotient), as influencing on the subordinate factors of creativity, such as, originality, germinal, trasformational, value, attraction, expressive power and organic systemicity. However it didn't have any effect on adequateness, properness, merit, complex and elegance. (2) Applying TRIZ's 40 inventive principles had a significant effect neither on CQ by sex, nor on the subordinate factors of creativity, except for originality and expressive power. Based on the results of the experiment, below suggestions were made to promote the application of TRIZ's 40 inventive principles to Technology Education. (1) Although this study was performed by using development activities, it is necessary to study more systemically to apply 40 inventive principles to regular subject in Technology Education. (2) As creativity was very important in Technology Education, there should be studies on the various types of inventive principles and techniques for Inventive Education in Technology Education.

Attention to the Internet: The Impact of Active Information Search on Investment Decisions (인터넷 주의효과: 능동적 정보 검색이 투자 결정에 미치는 영향에 관한 연구)

  • Chang, Young Bong;Kwon, YoungOk;Cho, Wooje
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.117-129
    • /
    • 2015
  • As the Internet becomes ubiquitous, a large volume of information is posted on the Internet with exponential growth every day. Accordingly, it is not unusual that investors in stock markets gather and compile firm-specific or market-wide information through online searches. Importantly, it becomes easier for investors to acquire value-relevant information for their investment decision with the help of powerful search tools on the Internet. Our study examines whether or not the Internet helps investors assess a firm's value better by using firm-level data over long periods spanning from January 2004 to December 2013. To this end, we construct weekly-based search volume for information technology (IT) services firms on the Internet. We limit our focus to IT firms since they are often equipped with intangible assets and relatively less recognized to the public which makes them hard-to measure. To obtain the information on those firms, investors are more likely to consult the Internet and use the information to appreciate the firms more accurately and eventually improve their investment decisions. Prior studies have shown that changes in search volumes can reflect the various aspects of the complex human behaviors and forecast near-term values of economic indicators, including automobile sales, unemployment claims, and etc. Moreover, search volume of firm names or stock ticker symbols has been used as a direct proxy of individual investors' attention in financial markets since, different from indirect measures such as turnover and extreme returns, they can reveal and quantify the interest of investors in an objective way. Following this line of research, this study aims to gauge whether the information retrieved from the Internet is value relevant in assessing a firm. We also use search volume for analysis but, distinguished from prior studies, explore its impact on return comovements with market returns. Given that a firm's returns tend to comove with market returns excessively when investors are less informed about the firm, we empirically test the value of information by examining the association between Internet searches and the extent to which a firm's returns comove. Our results show that Internet searches are negatively associated with return comovements as expected. When sample is split by the size of firms, the impact of Internet searches on return comovements is shown to be greater for large firms than small ones. Interestingly, we find a greater impact of Internet searches on return comovements for years from 2009 to 2013 than earlier years possibly due to more aggressive and informative exploit of Internet searches in obtaining financial information. We also complement our analyses by examining the association between return volatility and Internet search volumes. If Internet searches capture investors' attention associated with a change in firm-specific fundamentals such as new product releases, stock splits and so on, a firm's return volatility is likely to increase while search results can provide value-relevant information to investors. Our results suggest that in general, an increase in the volume of Internet searches is not positively associated with return volatility. However, we find a positive association between Internet searches and return volatility when the sample is limited to larger firms. A stronger result from larger firms implies that investors still pay less attention to the information obtained from Internet searches for small firms while the information is value relevant in assessing stock values. However, we do find any systematic differences in the magnitude of Internet searches impact on return volatility by time periods. Taken together, our results shed new light on the value of information searched from the Internet in assessing stock values. Given the informational role of the Internet in stock markets, we believe the results would guide investors to exploit Internet search tools to be better informed, as a result improving their investment decisions.

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

The Statistical Approach-based Intelligent Education Support System (통계적 접근법을 기초로 하는 지능형 교육 지원 시스템)

  • Chung, Jun-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.109-123
    • /
    • 2012
  • Many kinds of the education systems are provided to students. Many kinds of the contents like School subjects, license, job training education and so on are provided through many kinds of the media like text, image, video and so on. Students will apply the knowledge they learnt and will use it when they learn other things. In the existing education system, there have been many situations that the education system isn't really helpful to the students because too hard contents are transferred to them or because too easy contents are transferred to them and they learn the contents they already know again. To solve this phenomenon, a method that transfers the most proper lecture contents to the students is suggested in the thesis. Because the difficulty is relative, the contents A can be easier than the contents B to a group of the students and the contents B can be easier than the contents A to another group of the students. Therefore, it is not easy to measure the difficulty of the lecture contents. A method considering this phenomenon to transfer the proper lecture contents is suggested in the thesis. The whole lecture contents are divided into many lecture modules. The students solve the pattern recognition questions, a kind of the prior test questions, before studying the lecture contents and the system selects and provides the most proper lecture module among many lecture modules to the students according to the score about the questions. When the system selects the lecture module and transfer it to the student, the students' answer and the difficulty of the lecture modules are considered. In the existing education system, 1 kind of the content is transferred to various students. If the same lecture contents is transferred to various students, the contents will not be transferred efficiently. The system selects the proper contents using the students' pattern recognition answers. The pattern recognition question is a kind of the prior test question that is developed on the basis of the lecture module and used to recognize whether the student knows the contents of the lecture module. Because the difficulty of the lecture module reflects the all scores of the students' answers, whenever a student submits the answer, the difficulty is changed. The suggested system measures the relative knowledge of the students using the answers and designates the difficulty. The improvement of the suggested method is only applied when the order of the lecture contents has nothing to do with the progress of the lecture. If the contents of the unit 1 should be studied before studying the contents of the unit 2, the suggested method is not applied. The suggested method is introduced on the basis of the subject "English grammar", subjects that the order is not important, in the thesis. If the suggested method is applied properly to the education environment, the students who don't know enough basic knowledge will learn the basic contents well and prepare the basis to learn the harder lecture contents. The students who already know the lecture contents will not study those again and save more time to learn more various lecture contents. Many improvement effects like these and so on will be provided to the education environment. If the suggested method that is introduced on the basis of the subject "English grammar" is applied to the various education systems like primary education, secondary education, job education and so on, more improvement effects will be provided. The direction to realize these things is suggested in the thesis. The suggested method is realized with the MySQL database and Java, JSP program. It will be very good if the suggested method is researched developmentally and become helpful to the development of the Korea education.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

High-Speed Implementation and Efficient Memory Usage of Min-Entropy Estimation Algorithms in NIST SP 800-90B (NIST SP 800-90B의 최소 엔트로피 추정 알고리즘에 대한 고속 구현 및 효율적인 메모리 사용 기법)

  • Kim, Wontae;Yeom, Yongjin;Kang, Ju-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • NIST(National Institute of Standards and Technology) has recently published SP 800-90B second draft which is the document for evaluating security of entropy source, a key element of a cryptographic random number generator(RNG), and provided a tool implemented on Python code. In SP 800-90B, the security evaluation of the entropy sources is a process of estimating min-entropy by several estimators. The process of estimating min-entropy is divided into IID track and non-IID track. In IID track, the entropy sources are estimated only from MCV estimator. In non-IID Track, the entropy sources are estimated from 10 estimators including MCV estimator. The running time of the NIST's tool in non-IID track is approximately 20 minutes and the memory usage is over 5.5 GB. For evaluation agencies that have to perform repeatedly evaluations on various samples, and developers or researchers who have to perform experiments in various environments, it may be inconvenient to estimate entropy using the tool and depending on the environment, it may be impossible to execute. In this paper, we propose high-speed implementations and an efficient memory usage technique for min-entropy estimation algorithm of SP 800-90B. Our major achievements are the three improved speed and efficient memory usage reduction methods which are the method applying advantages of C++ code for improving speed of MultiMCW estimator, the method effectively reducing the memory and improving speed of MultiMMC by rebuilding the data storage structure, and the method improving the speed of LZ78Y by rebuilding the data structure. The tool applied our proposed methods is 14 times faster and saves 13 times more memory usage than NIST's tool.