• Title/Summary/Keyword: tilt sensor

Search Result 211, Processing Time 0.03 seconds

Pose Control of Mobile Inverted Pendulum using Gyro-Accelerometer (자이로-가속도센서를 이용한 모바일 역진자의 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.129-136
    • /
    • 2010
  • In this paper proposed the sensor fusion algorithm between a gyroscope and an accelerometer to maintain the inverted posture with two wheels which can make the robot body move to the desired destination. Mobile inverted robot fall down to the forward or reverse direction to converge to the stable point. Therefore, precise information of tilt angles and quick posture control by using the information are necessary to maintain the inverted posture, hence this paper proposed the sensor fusion algorithm between a gyroscope to obtain the angular velocity and a accelerometer to compensate for the gyroscope. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. However, a high-performing DSP and systems are needed for the algorithm. This paper realized the robot control method which is much simpler but able to get desired performance by using the sensor fusion algorithm and PID control.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

Posture Correction Guidance System using Arduino (아두이노를 활용한 자세교정 유도 시스템)

  • Kim, Donghyun;Kim, Jeongmin;Bae, Woojin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.369-372
    • /
    • 2021
  • These days, people spend more time sitting at a desk for studies or work. Also, because people continue to use computers, smartphones, and tablet PCs often during break times, their posture is getting worse. Maintaining a position of bad posture for an extended period of time causes problems with the musculoskeletal system related to the neck, shoulders, and spine. Additionally, problems such as physical fatigue and posture deformation are predicted to expand to a wide range of age groups. Therefore, the core function of the system we are developing is to ensure correct sitting posture and to receive alert notifications via the created mobile application. To create the system, a flex sensor, pressure sensor, and tilt sensor are attached to a chair and utilized. The flex sensor detects and compares the amount of bending in the chair's posture and transmits this value to an Arduino Uno R3 board. Additionally, information such as body balance and incline angle are collected to determine whether or not the current sitting posture is correct. When the posture is incorrect, a notification is sent through the mobile application to indicate to the user and the monitoring app that their posture is not correct. The system proposed in this study is expected to be of great help in future posture-related research.

  • PDF

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

A Two-step Kalman/Complementary Filter for Estimation of Vertical Position Using an IMU-Barometer System (IMU-바로미터 기반의 수직변위 추정용 이단계 칼만/상보 필터)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Estimation of vertical position is critical in applications of sports science and fall detection and also controls of unmanned aerial vehicles and motor boats. Due to low accuracy of GPS(global positioning system) in the vertical direction, the integration of IMU(inertial measurement unit) with the GPS is not suitable for the vertical position estimation. This paper investigates an IMU-barometer integration for estimation of vertical position (as well as vertical velocity). In particular, a new two-step Kalman/complementary filter is proposed for accurate and efficient estimation using 6-axis IMU and barometer signals. The two-step filter is composed of (i) a Kalman filter that estimates vertical acceleration via tilt orientation of the sensor using the IMU signals and (ii) a complementary filter that estimates vertical position using the barometer signal and the vertical acceleration from the first step. The estimation performance was evaluated against a reference optical motion capture system. In the experimental results, the averaged estimation error of the proposed method was 19.7 cm while that of the raw barometer signal was 43.4 cm.

Dynamic Gait embody using angular acceleration for a Walking Robot (각가속도를 이용한 이족 로봇의 동적 걸음새 구현)

  • Park, Jae-Mun;Park, Seung-Yub;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • In this paper, we embodied posture-stabilization and dynamic gait in a walking robot. 10 RC servo motors are used to operate joints. And the joints have enough moving ranges suitable in any walking pattern. Each joint trajectory is generated by cubic spline interpolation method and the stability of the trajectory is verified by using Zero Moment Point from the robot modeling. To avoid complex structure and expression, Zero Moment Point of the biped robot used angular acceleration is suggested. To measure the stability of the biped robot, Tilt sensor and gyro sensor are used. Finally, Personal Computer is used computer monitoring and data processing. Most of computation, such as 10 RC servo motor control, joint trajectory generating, ZMP compensation, sense measuring, etc, was used Digital Signal Processor.

  • PDF

Implementation of motor control system using NodeJS and MongoDB (NodeJS와 MongoDB를 활용한 모터 동작 제어시스템 구현)

  • Kang, Jin Young;Lee, Young-dong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.748-750
    • /
    • 2017
  • With the development of intelligent technologies, the Internet of Things(IoT) has been applied to various applications. A platform technology including a sensor-server-DB for easily managing data at a remote site is required. In this paper, we implemented a servo motor control system that moves by the smart phone tilt value using NodeJS and MongoDB. The system consists of Rasberry Pi, servo motor and smart phone and the servo motor sensor data is transmitted to NodeJS so that data can be stored in database.

  • PDF

Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals (IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류)

  • Lee, Hyeon Bin;Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

Face Recognition using AdaBoost Algorithm and Development of Surveillance Robot for a Ship (AdaBoost 알고리즘을 이용한 얼굴인식 및 선박용 감시로봇 개발)

  • Go, Seok-Jo;Park, Jang-Sik;Jang, Yong-Seo;Choi, Moon-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • This study developed a surveillance robot for a ship. The developed robot consists of ultrasonic sensors, an actuator, a lighting fixture and a camera. The ultrasonic sensors are used to avoid collision with obstacles in the environment. The actuator is a servo motor system. The developed robot has four drive wheels for driving. The lighting fixture is used to guide the robot in a dark environment. To transmit an image, a camera with a pan moving and a tilt moving is equipped on the upper part of the robot. AdaBoost algorithm trained with 15 features, is used for face recognition. In order to evaluate the face recognition of the developed robot, experiments were performed.

  • PDF

Development of Analysis System for Display Characters of FPD (FPD 화상특성 평가시스템 개발)

  • 송준엽;박화영;김현종;정연욱;김용래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.335-338
    • /
    • 2004
  • In this study has developed analysis system for automatic inspection of FPD(Flat Panel Display) characteristic, such as brightness, view angle, color ratio in the manufacturing process. Developed system consists of inspection-sensor part, acquiring a data by 3-CCD Color CCD camera and Inspection-stage part, driving a FPD holder to rotation and tilt direction. In experiment results, we could have ensured easily brightness distribution, available view angle, color reproduce and could expect to improve the quality, productivity, and yield.

  • PDF