• Title/Summary/Keyword: tidal wave propagation

Search Result 26, Processing Time 0.025 seconds

Study on Relationship Between Geographical Convergence and Bottom Friction at the Major Waterways in Han River Estuary using the Tidal Wave Propagation Characteristics (조석 전파 특성을 활용한 한강하구 주요 수로의 지형학적 수렴과 바닥 마찰 간의 관계에 대한 연구)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.383-392
    • /
    • 2011
  • The basic research of the estuarine circulation at Gyeong-Gi bay has not been well studied up to now, although coastal development pressures have been continuously increased. To understand the oceanographic phenomena at the Han River estuary, it's essential to understand the propagation characteristic of tidal wave which is the strongest external forcing in this region. In this study, we investigate the tidal wave propagation characteristics along the 3 major channels using observation data and numerical model. It is found that 3 channels are all hyper-synchronous and the most important physical factor controlling the tidal wave propagation is topographical convergence of estuary shape and friction. The result of analytic solution at ideal channel considering the topographical convergence and friction show that the contribution of physical role of convergence and friction varies at 3 different channel. And the ratio of convergence and friction at Yeomha channel is four times larger than Seokmo channel. Because of this effect, the location of maximum amplitude at Yeomha channel is showed up downward than Seokmo channel. The ratio of decreasing amplitude and increasing phase per unit distance between stations is bigger than Seokmo channel. Although 3 major channel show a hyper-synchronous pattern, Yeomha shows more frictionally dominant channel and Seokmo channel is more dominantly affected by convergence effect.

Tidal Propagation in the Keum River (금강 感趙구간의 조석전파)

  • 최병호;안원식
    • Water for future
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 1985
  • Tidal propagation in the Keum River has been routinely handled by numerical integration of the long fravity wave equation by Dronkers. The dynamic equations include non-linear terms thereby reproducing the shallow water tides. The model was used to compute tidal distribution of the Kum River for aveage spring, mean, neap tidal conditions and further utilised to investigate the waterlevel response within tidal reaches by combined tide and flood discharge effects. The objective of this initial study is to investigate the tidal dynamics of the lower reaches of the Keum River under the condition of before-cross-channel barrage construction.

  • PDF

Propagation of tidal wave and resulted tidal asymmetry upward tidal rivers (감조하천에서 조석 전파 및 조석비대칭)

  • Kang, Ju Whan;Cho, Hong-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.433-442
    • /
    • 2021
  • In order to examine the characteristics of tidal wave from the estuary to upsteam of tidal river, tidal asymmetry was identified based on analysis of the harmonic constants of M2 and M4 tidal constituents in the domestic western coastal regions. As shallow water tide is greatly developed in the estuary, flood dominance in Han River and Keum River, and ebb dominance in Youngsan River are developed. These tidal asymmetries can be reconfirmed by analyzing the tidal current data. Unlike having reciprocating tidal current patterns in Keum and Youngsan estuaries, rotaing tidal current pattern is shown in the Han River estuary due to the complex topography and waterways around Ganghwa Island area. However, when residual current is removed, flood dominance is shown in consistency with the tide data. The tidal asymmetry in the estuary tends to intensify with the growth in shallow water tide as the tidal wave propagates to upstream of tidal river. Energy dissipation, in shallow Han River and Keum River classified as SD estuaries, is very large regarding bottom friction characteristics. On the other hand, the deep Youngsan River, classified as a WD estuary, shows less energy dissipation.

Analysis of Sediment Transport in the Gaeya Open Channel by Complex Wave Field (복합 파랑장에 따른 개야수로 퇴적물이동 분석)

  • Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • In order to analyze wave propagation, tidal current, and sediment transport in the vicinity of the Gaeya open channel, it was classified into before(CASE1W) and after(CASE2W) installation of various artificial structures, and the calculation results for CASE1W and CASE2W were compared. For wave propagation, the results of incident and reflected waves were derived using the SWAN numerical model, and the tidal current velocity results were derived using the FLOW2DH numerical model for tidal current. The results of the SWAN numerical model and the FLOW2DH numerical model became the input conditions for the SEDTRAN numerical model that predicts sediment transport, and the maximum bed shear stress and suspended sediment concentration distribution near the Gaeya open channel were calculated through the SEDTRAN numerical model. As a result of the calculation of the SWAN numerical model, the wave height of CASE2W was increased by 40~50 % compared to CASE1W because the incident wave was diffracted and superimposed and the reflected wave was generated by about 7 km long northen jetty. As a result of the calculation of the FLOW2DH numerical model, According to the northen breakwater, the northen jetty and Geumrando, CASE2W was calculated 10~30 % faster than CASE1W in the tidal current of the Gaeya open channel. As a result of the calculation of the SEDTRAN numerical model, the section where the maximum bed shear stress is 1.0 N/m2 or more and the suspended concentration is 80mg/L or more was widely distributed in the Gaeya open channel from the marine environment by the complex wave field(incident wave, reflected wave and tidal wave) and the installation of various artificial structures. it is believed that a sedimentation phenomenon occurred in the Gaeya open channel.

Tidal Propagation Characteristics in the Estuary which shows Significant Shallow Tides (천해조가 발달된 하구에서의 조석파 전파특성)

  • 강주환;문승록
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • Tidal asymmetry which is generated at the mouth of an estuary tends to be more serious toward the upper stream due to the growth of shallow tides. Thus careful observations and applications for the shallow tides are needed if studies related to sediment or pollutant transport are carried on. An aim of the present study was to clarify the characteristics of generation and propagation of shallow tides by various numerical experiments including the effect of inter-tidal zone. The results of the present study will give a fundamental guide for the analysis of tidal envirorunental changes and for the design of a numerical model if coastal constructions are conducted.

  • PDF

A study on the tidal phenomena of Nagdong River-mouth - Tidal fluctuations of Nagdong River - (낙동강 하구 호석에 관한 조사연구(I)- 낙동강의 조위변동 -)

  • 양윤모;김탁부
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.3-24
    • /
    • 1982
  • The relations between tidal fluctuation and freshwater discharge are stuied dy use of observed data in the estuarine region of the Nagdong Rivre. Damping modulus which represents the resistance to propagation of tidal wave is estimated, and it is verified that when the fresh water discharge is lower than 300 m/sec., the elevation of mean-water-level at Gupo is the same as mean sea-water-level.

  • PDF

An Analytical Model of Co-oscillating Tide under Frictional Effect in the Yellow Sea

  • Kang, Sok-Kuh;Chung, Jong-Yul;Kang, Yong-Q.;Lee, Sang-Ryong
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.22-35
    • /
    • 1999
  • The response of the tidal waves to friction effect is investigated in terms of deformation of Kelvin and Poincare modes, The 1st Poincare mode does not exist over the low frequency region less than the critical frequency of omega ${\omega}$${\sqrt{2f}}$, with ${\gamma}$/f=0.0, but the mode comes to exist in the presence of friction. When friction exists and its magnitude increases, the wave number increases, indicating that the wave length of the Poincare mode becomes increasingly short with increasing friction. The damping coefficient gradually increases with increasing friction over the high frequency region, but the trend is reversed over the low frequency region. In case of Kelvin wave the present study substantiates the characters of Kelvin wave examined by Mofjeld (1980) and Lee (1988). Based on the examination of frictional effects on the tidal wave propagation, the co-oscillating tides in the Yellow Sea are examined by considering both the head opening and bottom friction effects. As friction is introduced and increased in addition to partial opening at bay head, the location of the amphidromic point near the Shantung Peninsula moves more southwestward. This southwestward movement of the amphidromic point is increasingly compatible with the observed location of Ogura's or Nishida's tidal chart of the M$_2$ tide.

  • PDF

Changes of Current and Wave Patterns Depending on Typhoon Pathways in a Shallow Channel between Jeju and Udo Island (태풍 경로에 따른 제주 우도수로에서의 해류와 파랑 특성 변화)

  • Hong, Ji-Seok;Moon, Jae-Hong;Yoon, Seok-Hoon;Yoon, Woo Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.205-217
    • /
    • 2021
  • A shallow channel between Jeju and Udo Islands, which is located in the northeastern Jeju Island, is influenced by storm- or typhoon-induced currents and surface waves as well as strong tidal currents. This study examines the typhoon-induced current and wave patterns in the channel, using Acoustic Doppler Current Meter (ADCP) measurements and an ocean-wave coupled modeling experiment. Three typhoons were chosen - Chaba (2016), Soulik (2018), and Lingling (2019) - to investigate the responses of currents and waves in their pathways. During the pre-typhoon periods, dominant northward flow and wave propagation were observed in the channel due to the southeasterly winds before the three typhoons. After the passage of Chaba, which passed over the eastern side of Jeju Island, the northward flow and wave propagation were totally reversed to the opposite direction, which was attributed to the strong northerly winds on the left side of the typhoon. In contrast, in the cases of Soulik and Lingling, which passed over the western side of Jeju Island, strong southerly winds on the right side of the typhoons continuously intensified the northward current and wave propagation in the channel. The model-simulated current and wave fields reasonably coincided with observational data, showing southward/northward flow and wave propagation in response to the right/left side of the typhoon pathways. Typhoon-induced downwind flows, and surface waves could enhance up to 2m/s and 3m due to the strong winds that lasted for more than 12 hours. This suggests that the flow and wave patterns in the Udo channel are highly sensitive to the pathway of typhoons and accompanying winds; thus, this may be a crucial factor with regard to the movement of seabed sediments and subsequent coastal erosion.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Analysis of Abnormal Wave at the West Coast on 31 March 2007 (2007년 3월 31일 서해안에 발생한 이상파랑에 대한 원인 분석)

  • Eom, Hyun-Min;Seung, Young-Ho;Woo, Seung-Buhm;You, Sung-Hyup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.217-227
    • /
    • 2012
  • On 31 March 2007, the abnormal wave occurred along western coast of Korean including Yeonggwang. In this paper, this event is studied using available field measurement data for the event analysis and numerical model for reproducing the unknown waves. We found several 1-min interval tidal elevation and mean sea level pressure (MSLP) data along the western coast of Korea and analyzed it using wavelet technique. We computed the arrival time and the propagation direction of abnormal wave using wavelet results and performed the numerical simulation using 2 dimensional shallow water wave model. The sea level under the forcing of air pressure jump was obviously amplified by the Proudman resonant effect. The computed sea levels compared with observations are underestimated, but the order of arrival time at the tidal station showed good agreement.